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As a promising alternative, nuclear energy is going to play a major role in coming decades to fulfill 
the world’s energy demand. At present, ~ 11 % of total world’s energy demand is contributed by nuclear. 
However, fuel fission products and fuel production byproducts contain radioactive nuclides such as 
129/131I, 127Xe, 85Kr, 235U, 137Cs, 90Sr, 99Tc, 79Se, etc, that exist in gaseous, ionic, and other forms. Proper partitioning and 
safe storage of these radioactive wastes are paramount for the successful growth of nuclear technology. 
Since long back, researchers have increasingly focused on the development of various adsorbents for their 
selective sequestration. In recent time, a new class of crystalline porous material, known as metal organic 
framework shows promising growth in this aspect. Because of many fascinating properties like high surface 
area and porosity, easy structural modification with various functional groups, metal organic frameworks 
play a significant role in nuclear segment also.

 This issue is an attempt to review the contribution of metal organic frameworks (MOFs) towards nuclear 
applications. This issue of SMC bulletin presents a compilation of articles on metal organic frameworks 
in the area of heavy metal extraction and management of gaseous and volatile fission products (Xe, Kr, I 
& CH3I).

It is my pleasure and great honor to serve as the guest editor for this special issue on “Metal Organic 
Framework based Materials for Nuclear Energy Application”. I extended my sincere gratitude to Dr. A. 
K. Tyagi, President of SMC, and the all executive committee members for giving me this opportunity. I 
express my gratitude to all the authors for contributing their articles. I hope the readers will find the articles 
engaging and informative. 

Guest Editorial

Dr. Siddhartha Kolay
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From the desks of the President and Secretary 

Dear SMC Members, Colleagues and Readers,

Warm greetings from the Executive Council of the Society for Materials Chemistry (SMC)!

There has been continuous effort of our editorial team to bring out contemporary thematic issues. 
The multidisciplinary nature of these issues makes them relevant to the researchers of different scientific 
background. In the same direction, current issue entitled “Metal Organic Framework for Nuclear 
Application” is another marching step.

As the title express, this thematic issue deal with application of Metal Organic Framework for Nuclear 
Application. First two articles describe utilization of Metal Organic Frameworks Applied for Adsorption 
of Heavy Metal Ions and iodine respectively. Next chapter is dedicated for Separation, Capture and 
Sensing/Detection of Noble Radioactive Gases using MOF. The last chapter of this thematic collection also 
narrates application of functionalized MOFs as Highly Efficient Adsorbents for Aqueous Mercury ions.

We gratefully acknowledge Dr. Siddhartha Kolay who agreed to be the guest editor of this issue 
and put in efforts to bring out this special issue. We also acknowledge the efforts of all the contributing 
authors for submitting their informative articles. We also thank all the members of SMC for their continued 
support and cooperation in the growth of the Society for Materials Chemistry.

Dr. A. K. Tyagi Dr. Sandeep Nigam 
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Fascinating Field of Metal Organic Frameworks Applied for Adsorption of 
Heavy Metal Ions from Aqueous Solution

Nitin Gumbera,b and Rajesh V. Paia,b

aFuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai, India- 400085
bHomi Bhabha National Institute, Anushaktinagar, Mumbai, India- 400094

 Email: ngumber@barc.gov.in, rajeshvp@barc.gov.in

Abstract
The state of art in the field of Metal Organic Frameworks (MOFs)has witnessed an exponential surge in 
the recent years. Because of their favorable characteristics like variable pore size, high surface area and 
pore volume, MOFs have been utilized in diverse applications in fields such as catalysis, drug delivery, 
adsorption etc. making them industrial products. Of late MOFs have been exploited for removal of heavy 
metal ions for waste water remediation. This article briefly summaries different methodologies employed 
for synthesizing them, the dependence of pH and other parameters on adsorption characteristics of different 
heavy metal ions. Finally, some future perspective is provided anticipating the newcomers to develop 
interest in the field.

1. Introduction
With the ever increase in population, the urge for 

development of industries is rising at a rapid pace. The 
byproducts of these industries usually constitute heavy 
metal ions which are likely to affect human health and 
biosphere if present in excess. For eg. the presence of 
As above 10 µg/L is known to affect kidney and liver.[1] 

Similarly the occurrence of Cd above 5 µg/L is considered 
alarming by World Health Organization (WHO) as it is 
directly linked with osteomalacia, anemia and brain related 
issues.[2] Another class of heavy metals associated with 
nuclear industry such as U, Th etc. pose problems not only 
due to the chemo toxicity associated with them but also due 
to their radiotoxicity. WHO specifies a threshold limit of 30 
µg/L to U.[3] Remediation of such water bodies where these 
radiotoxic metal ions are disposed need to be managed by 
employing suitable measures. The presence of different 
metal ions requires different techniques for effective 
managing of waste water and thus poses a great challenge 
for the separation scientists. Depending on the metal ion 
of interest, different methodologies have been applied 
which includes precipitation, ion exchange, adsorption, 
membrane based etc.[4, 5] Major drawback among most of 
the techniques described above includes cost factor, high 
energy utilization and generation of secondary waste. 
Adsorption is considered to be the best among them since 
it is relatively simpler technique, generates low secondary 
waste and is highly efficient and applicable for a wide 
range of metal ions. 

The use of activated carbon, zeolites, clays etc. have 
been used widely in the literature for adsorption of heavy 

metal ions because of their ease of synthesis and relatively 
cheaper raw materials required.[6] However, the low 
adsorption capacity, complicated functionalization and less 
selective behavior towards a particular metal ion renders 
their limited practical applicability. Thus, the research 
for more advanced materials which are devoid of above 
limitations is being pursued since last few years. 

The major driving force for the adsorption is the 
presence of highly active adsorption sites which are 
directly or indirectly linked with high surface area and 
pore volume. To tackle the above challenge, the search for 
advanced porous materials like Metal Organic Frameworks 
(MOFs), Covalent Organic Frameworks (COFs)[7], Porous 
Organic Polymers (POPs)[8] etc. has exploded as hot topics 
in last two decades. The advantages of above-mentioned 
materials include ease of functionalization, high surface 
area and pore volume, selective metal ion capture etc. 
POPs are usually synthesized through typical organic 
reactions like C-C coupling, polymerization etc. and are 
linked through strong covalent bonds. Even though POPs 
can be tuned to have varying porosity but due to their 
amorphous nature, their characterization is a difficult task 
which creates vulnerability in predicting the mechanism of 
adsorption.  COFs are also formed through strong covalent 
interactions and the functionality can be induced on the 
reactant organic molecule but the synthesis of COFs is 
tedious and only limited methods are known which result 
into formation of imine or ester linkages.[9]

2. Metal Organic Frameworks (MOFs)
MOFs are hybrid materials made up of inorganic metal 
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formation of MOFs using diverse starting 
materials, exceptionally high surface area 
and pore volume, post synthetic modification 
to induce selectivity etc. The possibility of 
combining different metal ions and linkers 
led to the discovery of abundant MOFs like 
HKUST-1, MOF-76, UiO-66, CAU-1, MOF-
5, MIL-53, MOF-808, ZIFs etc.[12] Apart 
from using carboxylate based linkers 
nitrogen containing molecules like azolate 
compounds were also utilized to synthesize 
class of MOFs known as ZIFs. The geometry 
of MOFs can also be tuned depending on the 
connectivity of linker varying from ditopic to 
octatopic linkers. Thus the framework 
obtained through these linkers usually 
consists of empty spaces and large surface 
area which thrust them to be utilized as 
potential candidates for diverse applications 

like catalysis, adsorption, sensing, gas 
storage, drug delivery etc.[13] 
3. Synthesis of MOFs 

 
Similar to the preparation of conventional 
materials, MOFs can be synthesized through 
different methods which are summarized in 

Fig. 2. Solvothermal and hydrothermal 
methods are most common synthesis method 
employed. In here the reactants and solvents 
(water in case of hydrothermal) are added in 
a closed vessel under certain temperature and 
pressure to yield MOFs with high degree of 
crystallinity.[14] In case of microwave 
synthesis, the electromagnetic waves interact 
with the reactants to impart high energy to the 
molecules resulting in fast collision and rapid 
uniform heating leading to formation of MOF 
in a brisk amount of time.[15] 
Electrochemical methods employ chemistry 
at electrode surface using electrolytic 
principles. Two methods namely cathodic 
and anodic synthesis are done and the former 
is more commonly used in comparison to 
latter. The production of MOF can be carried 
out continuously using this method.[16] 

Other methods like mechanochemical and 
sonochemical utilizes grinding and ultrasonic 
energy respectively. However the formation 
of undesired byproducts/low purity of target 
is still a major concern for both the 
methods.[17] 
4. Stability of MOFs 

Fig. 2. Synthetic strategies available for preparing MOFs 

ions and organic linkers giving rise to a 3-D crystalline 
framework with regularly spaced apertures. The topic 
came into limelight at the end of last century when Yaghi 
et. al. synthesized a divalent metal based MOF with 
benzene dicarboxylic acid as the linker and named it as 
MOF-5 with Langmuir surface area ~ 2900 m2g-1which 
was higher than any other material reported at that time.
[10] The group became more active and renowned as they 
discovered the concept of Isoreticular chemistry in 2002 in 
which different size of linkers were used and the topology 
of the MOF remained same but the pore size varied 
depending on the length of the linker as shown in Fig. 1.[11] 
The properties which distinguish MOFs from conventional 
materials include stability and rigidity of framework, 
versatility of formation of MOFs using diverse starting 
materials, exceptionally high surface area and pore volume, 
post synthetic modification to induce selectivity etc. The 
possibility of combining different metal ions and linkers 
led to the discovery of abundant MOFs like HKUST-1, 
MOF-76, UiO-66, CAU-1, MOF-5, MIL-53, MOF-808, ZIFs 
etc.[12] Apart from using carboxylate based linkers nitrogen 
containing molecules like azolate compounds were also 
utilized to synthesize class of MOFs known as ZIFs. The 
geometry of MOFs can also be tuned depending on the 
connectivity of linker varying from ditopic to octatopic 
linkers. Thus the framework obtained through these linkers 

of crystallinity.[14] In case of microwave synthesis, the 
electromagnetic waves interact with the reactants to impart 
high energy to the molecules resulting in fast collision 
and rapid uniform heating leading to formation of MOF 
in a brisk amount of time.[15] Electrochemical methods 
employ chemistry at electrode surface using electrolytic 
principles. Two methods namely cathodic and anodic 
synthesis are done and the former is more commonly 
used in comparison to latter. The production of MOF can 
be carried out continuously using this method.[16] Other 
methods like mechanochemical and sonochemical utilizes 
grinding and ultrasonic energy respectively. However the 
formation of undesired byproducts/low purity of target is 
still a major concern for both the methods.[17]

4. Stability of MOFs
Metal ions and linkers are connected through 

coordinative bonds which are less stable compared to 
covalent bonds which make them amenable to degradation 
in highly acidic and basic conditions. However, the linkers 
and metal nodes can be suitably chosen to remain stable 
in pH varying from 2-11. The stability of any material 
can be optimized by following the principles of HSAB 
theory which states that the combination of hard acid and 
hard base or soft acid and soft base result into stronger 
coordination compared to when they are mixed.[18] Thus, 
when  hard acids like Al3+, Cr3+, Zr4+, Th4+ etc. are combined 
with hard bases like O2-from carboxylate linkers, the 
synthesized MOFs possess high stability under flexible 
pH conditions. Similarly, lower valent metal ions like Cu2+, 
Zn2+, Ni2+ etc. form stronger bond with nitrogen based soft 
linkers and remain stable. Carboxylate based MOFs are 
more stable in acidic conditions compared to basic because 
of high pKa of linkers and vice versa for nitrogen-based 
linkers. The tendency of metal ions to get hydrolyze and 

Fig. 1. Single crystal x-ray structures of IRMOFs  
(Reproduced from ref. [11])

adsorption capacity, complicated 
functionalization and less selective behavior 
towards a particular metal ion renders their 
limited practical applicability. Thus, the 
research for more advanced materials which 
are devoid of above limitations is being 
pursued since last few years.  
The major driving force for the adsorption is 
the presence of highly active adsorption sites 
which are directly or indirectly linked with 
high surface area and pore volume. To tackle 
the above challenge, the search for advanced 
porous materials like Metal Organic 
Frameworks (MOFs), Covalent Organic 
Frameworks (COFs)[7], Porous Organic 
Polymers (POPs)[8] etc. has exploded as hot 
topics in last two decades. The advantages of 
above-mentioned materials include ease of 
functionalization, high surface area and pore 
volume, selective metal ion capture etc. POPs 
are usually synthesized through typical 
organic reactions like C-C coupling, 
polymerization etc. and are linked through 
strong covalent bonds. Even though POPs 
can be tuned to have varying porosity but due 

to their amorphous nature, their 
characterization is a difficult task which 
creates vulnerability in predicting the 
mechanism of adsorption.  COFs are also 

formed through strong covalent interactions 
and the functionality can be induced on the 
reactant organic molecule but the synthesis of 
COFs is tedious and only limited methods are 
known which result into formation of imine 
or ester linkages.[9] 
 
2. Metal Organic Frameworks (MOFs) 

 
MOFs are hybrid materials made up of 
inorganic metal ions and organic linkers 
giving rise to a 3-D crystalline framework 
with regularly spaced apertures. The topic 
came into limelight at the end of last century 
when Yaghi et. al. synthesized a divalent 
metal based MOF with benzene dicarboxylic 
acid as the linker and named it as MOF-5 
with Langmuir surface area ~ 2900 m2g-

1which was higher than any other material 
reported at that time.[10] The group became 
more active and renowned as they discovered 
the concept of Isoreticular chemistry in 2002 
in which different size of linkers were used 
and the topology of the MOF remained same 
but the pore size varied depending on the 

length of the linker as shown in Fig. 1.[11] 
The properties which distinguish MOFs from 
conventional materials include stability and 
rigidity of framework, versatility of 

Fig. 1. Single crystal x-ray structures of IRMOFs (Reproduced from ref. [11]) 

usually consists of empty spaces and large surface area 
which thrust them to be utilized as potential candidates 
for diverse applications like catalysis, adsorption, sensing, 
gas storage, drug delivery etc.[13]

3. Synthesis of MOFs
Similar to the preparation of conventional materials, 

MOFs can be synthesized through different methods which 
are summarized in Fig. 2. Solvothermal and hydrothermal 
methods are most common synthesis method employed. 
In here the reactants and solvents (water in case of 
hydrothermal) are added in a closed vessel under certain 
temperature and pressure to yield MOFs with high degree 

Fig. 2. Synthetic strategies available for preparing MOFs
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precipitate increase as the pH is increased and hence most 
of the reports generally deals with the utilization of MOFs 
in pH < 10.[19] Some of the water stable MOFs such as UiO-
66, MIL-101, MOF-808 etc. were utilized widely for the 
adsorption of heavy metal ions from aqueous solutions.
[20] For instance, UiO-66 is made up of tetravalent metal 
ions (Zr4+, Ce4+, Th4+ etc.) and dicarboxylic acid as the 
linker to self-assemble as a face centered cubic structure 
having hexanuclear cluster [M6O4(OH)4]12+ which is further 
attached to 6 benzene dicarboxylic acids/linkers to form a 
fcu topology with  well-defined pores which can play a vital 
role in adsorption of different metal ions. Simpler structural 
representation of UiO-66 is shown as Fig. 3.

An astonishing experimental adsorption capacity 1217 
mg/g towards U (VI) was observed. Similarly, Guo etal. 
synthesized a thiol defective MOF using thio acetic acid 
as modulator which resulted into high –SH binding sites 
even after a defective structure and obtained an adsorption 
capacity of  ~714.8 mgg-1 towards Hg2+ ion.[23]

5.2 MOF functionalization
To induce selectivity for a particular metal ion, the 

functionalization of either organic linker or metal node 
can be carried out with the former being more commonly 
used practice. Two strategies are employed to functionalize 
the MOF. In first, the linker with predefined functional 
groups are already present and reacted with metal ion to 
form a desired product. In another case, some MOFs are 
exceedingly stable such that the functionalization can be 
carried after synthesis of MOF and is not usually obtained 
through direct synthesis. Zhong et al. synthesized MOF-
808 (Zr) and post-modified separately with oxalic acid and 
thioglycolic acid to yield MOFs with hard and soft bases 
respectively. MOF-808 ox could adsorb hard acids whereas 
MOF-TGA could efficiently adsorb soft metal ions sparing 
hard ions as shown in Fig. 4.[24]

Metal ions and linkers are connected through 
coordinative bonds which are less stable 
compared to covalent bonds which make 
them amenable to degradation in highly 
acidic and basic conditions. However, the 
linkers and metal nodes can be suitably 
chosen to remain stable in pH varying from 
2-11. The stability of any material can be 
optimized by following the principles of 
HSAB theory which states that the 
combination of hard acid and hard base or 
soft acid and soft base result into stronger 
coordination compared to when they are 
mixed.[18] Thus, when  hard acids like Al3+, 
Cr3+, Zr4+, Th4+ etc. are combined with hard 
bases like O2-from carboxylate linkers, the 
synthesized MOFs possess high stability 
under flexible pH conditions. Similarly, 

lower valent metal ions like Cu2+, Zn2+, Ni2+ 
etc. form stronger bond with nitrogen based 
soft linkers and remain stable. Carboxylate 
based MOFs are more stable in acidic 
conditions compared to basic because of high 
pKa of linkers and vice versa for nitrogen-
based linkers. The tendency of metal ions to 
get hydrolyze and precipitate increase as the 
pH is increased and hence most of the reports 

generally deals with the utilization of MOFs 
in pH < 10.[19] Some of the water stable 
MOFs such as UiO-66, MIL-101, MOF-808 
etc. were utilized widely for the adsorption of 
heavy metal ions from aqueous solutions.[20] 
For instance, UiO-66 is made up of 
tetravalent metal ions (Zr4+, Ce4+, Th4+ etc.) 
and dicarboxylic acid as the linker to self-
assemble as a face centered cubic structure 
having hexanuclear cluster [M6O4(OH)4]12+ 

which is further attached to 6 benzene 
dicarboxylic acids/linkers to form a fcu 
topology with  well-defined pores which can 
play a vital role in adsorption of different 
metal ions. Simpler structural representation 
of UiO-66 is shown as Fig. 3. 
 

5. Adaptation of MOF for metal ion 
removal  

MOFs can either be utilized as such or can be 
modified to form a library of materials which 
have suitable characteristic for the adsorption 
of metal ions. The most significant changes 
include formation of a defective structure, 

Fig. 3.  Representative structure of UiO-66 showing the hexanuclear cluster; (M= Tetravalent metal ions like Zr4+, Ce4+, Th4+ etc.) Fig. 3.  Representative structure of UiO-66 showing the hexanuclear 
cluster; (M= Tetravalent metal ions like Zr4+, Ce4+, Th4+ etc.)

5.1 Adaptation of MOF for metal ion removal 
MOFs can either be utilized as such or can be 

modified to form a library of materials which have 
suitable characteristic for the adsorption of metal ions. 
The most significant changes include formation of a 
defective structure, functionalization of MOF, formation 
of composite material etc. 

5.1 Defective Structure
Defects in MOF structure are generally introduced 

through the use of simultaneous addition of an organic 
linker and modulator which competes for metal ion node 
during formation of framework. Using this strategy the 
surface area and pore volume is enhanced which leads to 
the availability of active sites benefitting the adsorption 
characteristic of the material.[21] Wang et al. reported the 
synthesis of defective hierarchical porous Zr based UiO-66 
MOFs using dodecanoic acid as the modulator.[22]

functionalization of MOF, formation of 
composite material etc.  

5.1 Defective Structure 

Defects in MOF structure are generally 
introduced through the use of simultaneous 
addition of an organic linker and modulator 
which competes for metal ion node during 
formation of framework. Using this strategy 
the surface area and pore volume is enhanced 
which leads to the availability of active sites 
benefitting the adsorption characteristic of 
the material.[21] Wang et al. reported the 
synthesis of defective hierarchical porous Zr 
based UiO-66 MOFs using dodecanoic acid 
as the modulator.[22] 
An astonishing experimental adsorption 
capacity 1217 mg/g towards U (VI) was 
observed. Similarly, Guo etal. synthesized a 
thiol defective MOF using thio acetic acid as 

modulator which resulted into high –SH 
binding sites even after a defective structure 
and obtained an adsorption capacity of  
~714.8 mgg-1 towards Hg2+ ion.[23] 

5.2 MOF functionalization 

To induce selectivity for a particular metal 
ion, the functionalization of either organic 
linker or metal node can be carried out with 
the former being more commonly used 
practice. Two strategies are employed to 
functionalize the MOF. In first, the linker 
with predefined functional groups are already 
present and reacted with metal ion to form a 
desired product. In another case, some MOFs 
are exceedingly stable such that the 
functionalization can be carried after 
synthesis of MOF and is not usually obtained 
through direct synthesis. Zhong et al. 
synthesized MOF-808 (Zr) and post-
modified separately with oxalic acid and 
thioglycolic acid to yield MOFs with hard 
and soft bases respectively. MOF-808 ox 
could adsorb hard acids whereas MOF-TGA 
could efficiently adsorb soft metal ions 
sparing hard ions as shown in Fig. 4.[24] 

5.3 MOF Composites 

Combination of MOFs and other material to 
form a composite material having better 
adsorption properties than individual 
counterparts have been studied in detail.[25] 

Fig. 4. Removal efficiency of heavy metal ion in single-component systems. The removal efficiency of hard Lewis metal ions, soft 
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5.3 MOF Composites
Combination of MOFs and other material to form a 

composite material having better adsorption properties 
than individual counterparts have been studied in detail.[25]

The improvement is attributed to the presence of 
synergistic effect between both the components. Different 
materials like graphene, activated carbon, metal oxides, 
magnetic nanoparticles etc. are widely used for the 
formation of composites. For e.g. the presence of magnetic 
nanoparticles like Fe3O4 in the matrix can aid in the 
separability of MOF using an external magnet. Similarly 
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our group devised an one step hydrothermal method to 
synthesize a composite of CeO2 and UiO-66 (Ce) resulting 
in 25 % increase in adsorption capacity towards U (VI) 
compared to virgin MOF with maximum adsorption 
capacity of 239 mg/g as shown in Fig.5.[26]

but other factors also affect the pH dependent adsorption. 

6.2 Adsorption Kinetics
The rate of adsorption of metal ion over the surface 

of MOF is a vital parameter of consideration since it is 
directly linked with the amount of power consumption. 
Additionally, the adsorption mechanism can be governed 
by rate of adsorption of metal ion. The rate of adsorption 
on any surface is governed by four steps.[29] The first one 
constitutes the transport of metal ion in the bulk of solution. 
The second step involves the diffusion of metal ion in close 
proximity of adsorbent. Third and fourth step constitutes 
the diffusion of metal ion in the pores of material and 
the binding of metal ion on the surface of adsorbate 
respectively. First step can generally be ignored when 
mixing is carried out using mechanical systems and thus 
not considered as rate determining step. Any of the steps 
could be limiting or a combination of them could also be 
possible.  Different kinetic models are utilized to elucidate 
the rate determining step which mainly includes pseudo 
first order ((PFO) (1)), pseudo second order (PSO(2)) 
and Webber Morris models (3) and the corresponding 
equations are mentioned below.[30]

Where qe and qt represents adsorption capacity at 
equilibrium and at time ‘t’ respectively. k1, k2 and ki are 
respective rate corresponding to PFO, PSO and Weber 
Morris models and are dependent on operating conditions.

PFO is more commonly suited to systems in which rate 
limiting step is diffusion controlled.  PSO is suited for those 
in which chemisorption is the main mode of adsorption. In 
Webber Morris qt vs  and if it passes through origin then 
intraparticle is the sole mechanism otherwise other steps 
are also involved. The least square fitting is carried out to 
know the better fit among the models described above. 
For more detailed understanding, reader is suggested to 
go   through reviews already present in the literature.[31]

6.3 Adsorption Isotherm
Adsorption isotherm reveals the change in adsorption 

capacity as the initial concentration of heavy metal ion 
is increased. Adsorption isotherm is used to understand 
the relation between adsorbent and adsorbate under 
equilibrium conditions. Additionally, it can also predict 
accurately the maximum adsorption capacity and strength 
for a given system. The parameters are highly important 
for designing adsorption system in industrial scale. Most 
common models used includes Langmuir (4), Freundlich 
(5) and Temkin (6) isotherm models and the corresponding 
equations are described below.[32]

Fig. 5. Variation of adsorption capacity of UiO-66 (Ce) and CeO2@
UiO-66(Ce) with change in initial uranium concentration
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6. Factors Affecting Adsorption 
Performance 

The adsorption characteristic of a MOF based 
material is evaluated through different 
studies which includes pH variation, 
adsorption kinetics, adsorption isotherm, 
reusability, selectivity, temperature 
dependent adsorption etc.  Brief details for all 
the above-mentioned techniques are 
described below.  

 
6.1 pH variation 

pH can affect both the surface charge of 
adsorbent and the specification of metal 
ion.[27] In general, at lower pH MOFs are 
usually protonated and hence exhibit positive 
surface charge. As pH is increased, the 
deprotonation occurs and after certain pH 
adsorbent exhibits negative charge. The 
surface charge on an adsorbent can be 
calculated through zeta potential 
measurements. On the other hand, as the pH 
is increased different metal ions tend to 
hydrolyze resulting in 

multinuclear/hydroxide complexes and 
subsequently precipitating at higher pH. If 
electrostatic interaction is the sole factor 
affecting adsorption, the same can be 
confirmed through zeta potential 
measurements and correlating the metal ion 
species present at that pH. For instance in 
case of arsenate ion, the predominant species 
at pH 2-3 is H3AsO4 and maximum 
adsorption capacity using UiO-66 (Zr) was 
observed at the mentioned pH.[28] This was 
attributed to the fact that μ3-OH, are 
responsible for binding four equivalent 
arsenate species with the simultaneous 

Fig. 5. Variation of adsorption capacity of UiO-66 (Ce) and CeO2@UiO-66(Ce) with change in initial uranium concentration 
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The adsorption characteristic of a MOF based material 

is evaluated through different studies which includes 
pH variation, adsorption kinetics, adsorption isotherm, 
reusability, selectivity, temperature dependent adsorption 
etc.  Brief details for all the above-mentioned techniques 
are described below. 

6.1 pH variation
pH can affect both the surface charge of adsorbent and 

the specification of metal ion.[27] In general, at lower pH 
MOFs are usually protonated and hence exhibit positive 
surface charge. As pH is increased, the deprotonation 
occurs and after certain pH adsorbent exhibits negative 
charge. The surface charge on an adsorbent can be 
calculated through zeta potential measurements. On the 
other hand, as the pH is increased different metal ions 
tend to hydrolyze resulting in multinuclear/hydroxide 
complexes and subsequently precipitating at higher 
pH. If electrostatic interaction is the sole factor affecting 
adsorption, the same can be confirmed through zeta 
potential measurements and correlating the metal ion 
species present at that pH. For instance in case of arsenate 
ion, the predominant species at pH 2-3 is H3AsO4 and 
maximum adsorption capacity using UiO-66 (Zr) was 
observed at the mentioned pH.[28]  This was attributed to the 
fact that μ3-OH, are responsible for binding four equivalent 
arsenate species with the simultaneous liberation of  H+ 
from H3AsO4 and hence proves that not only zeta potential 
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Where qmax and qe denote the maximum adsorption 
capacity and adsorption capacity at equilibrium. Kf, Kl and 
AT represents constants for respective models.

Similar to kinetic models, the experimental data is fitted 
using least square method. The Langmuir model assumes 
the adsorption to be directly proportional to fraction of 
sites available and adsorption occurs homogenously in 
monolayer. In contrast, Freundlich isotherm is applicable 
for cases where adsorption is occurring at heterogeneous 
sites with the formation of multilayers which is more 
common for multicomponent systems. In case of Temkin 
adsorption isotherm, the interactions between adsorbate 
molecules are assumed and the heat of adsorption of 
successive layers decreases as the surface coverage 
increases. 

6.4 Reusability Studies
The practical use of an adsorbent is highly dependent 

on the number of cycles an adsorbent can be used without 
deteriorating with respect of initial adsorption capacity. 
Adsorption-desorption cycles are used where in first 
adsorption at MOF is carried out which is subsequently 
eluted using different eluents like dilute acids, bases 
or other solvents. For eg. our group reported a room 
temperature synthesis of UiO-66 (Ce) and utilized it for 
removal of As (V) and even after 3 adsorption-desorption 
cycles using 0.01 M HNO3 as the eluent, 96% of the 
adsorption capacity was still retained whereas in contrast 
when CeO2@UiO-66 (Ce) was utilized for uranium 
adsorption, it could only exhibit 35% of initial capacity 
as shown in Fig. 6 (a). This difference might be due to the 
different interactions between adsorbent and adsorbate in 
respective cases. 

6.5 Selectivity Studies 
The adsorption studies using MOFs are carried out 

using a stock solution comprising of a single metal ion and 
hence it is vital to determine whether the material would 
be able to eliminate particular metal ion in presence of 
number of elements simultaneously. Functionalization 
of MOF as described earlier is highly recommended for 
selective extraction of metal ion among others. For e.g. Wu 
et al. synthesized a amidoxime based UiO-66 MOF and it 
could adsorb uranium more than 95 % among different 
metal ions.[33] In our previous work, micro porous CAU-
1-NH2could selectivity adsorb Th in presence of U under 
different U/Th concentrations. Even at 1:5 Th/U, MOF 
showed higher selectivity for Th which is attributed to 
the higher ionic potential of Th (IV) compared to UO2

2+ as 
shown in Fig. 6 (b).

 6.6 Thermodynamic Studies
Thermodynamics of adsorption are explored by 

varying the temperature of adsorption. By plotting Ln Kd 
as a function of temperature, the values corresponding to 
∆H° and ∆S° can be calculated which are directly linked 
with the Gibbs free energy and calculated at different 
temperatures using 

∆G° = ∆H° - T∆S°     (7)

For instance, Chen et al. utilized a Cu (I) based MOF for 
removal of Cr (VI) and through temperature dependence 
studies revealed ∆G°, ∆H°, and ∆S° to be negative in 
nature.[34] Even though the randomness was decreasing 
during adsorption, the negative value of∆G revealed 
the favorability of adsorption at particular temperature. 
However, as the temperature was increased from 288 to 
328 K,∆G was decreasing (more +ve) which hinted the 
unfavourability of adsorption at high temperature.
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understand, how the metal ion is interacting 
with the surface of adsorbent. To elucidate 
the same, different techniques namely FT-

IR/Raman, XPS and theoretical modeling are 

generally carried out. FT-IR/Raman studies 
are carried to get information regarding the 
involvement of bond towards adsorption or 
the species adsorbed.  For instance J. Wang 
et al. developed a MOF@COF composite 
and vapor adsorption of I2 was evaluated.[35] 
Clear Raman signature peaks of 108 and 169 
cm-1 corresponding to the presence of I3

- and 
I5

- were obtained which established that 
I2was getting polarized as it came in contact 
with the adsorbent due to charge transfer 
between lone pair on N atom and * orbital 
of I2. Similarly the adsorption of U in the 
form of uranyl ions (UO2

2+) is confirmed by 
observing a peak at ~ 930 cm-1 in FT-IR 
spectrum.[36] The shift in frequency in FT-
IR after adsorption is a direct consequence of 
involvement of particular bond towards 
adsorption.  
7.2 X-ray Based techniques 
 

Fig. 6. (a) Th and U co-adsorbed in CAU-1 NH2 at different Th/U ratio; (b) Effect of adsorption desorption cycles on 
performance of MOF 
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7. Decoding Adsorption Mechanism

7.1 FT-IR
After adsorption studies, it is important to understand, 

how the metal ion is interacting with the surface of 
adsorbent. To elucidate the same, different techniques 
namely FT-IR/Raman, XPS and theoretical modeling are 
generally carried out. FT-IR/Raman studies are carried 
to get information regarding the involvement of bond 
towards adsorption or the species adsorbed.  For instance 
J. Wang et al. developed a MOF@COF composite and vapor 
adsorption of I2 was evaluated.[35] Clear Raman signature 
peaks of 108 and 169 cm-1 corresponding to the presence 
of I3

- and I5
- were obtained which established that I2was 

getting polarized as it came in contact with the adsorbent 
due to charge transfer between lone pair on N atom and 
σ* orbital of I2. Similarly the adsorption of U in the form of 
uranyl ions (UO2

2+) is confirmed by observing a peak at ~ 
930 cm-1 in FT-IR spectrum.[36] The shift in frequency in FT-
IR after adsorption is a direct consequence of involvement 
of particular bond towards adsorption. 

7.2 X-ray Based techniques
The main feature that distinguishes XPS from FT-IR is 

the detection of chemical state of an element in the former 
technique. Since adsorption is a surface phenomenon, the 
changes in XPS spectrum can be easily correlated with 
the mechanism of adsorption. Wang et al. reported the 
adsorption and fluorescence quenching using MIL-101 
NH2 when exposed to heavy metal ions like Cu (II), Fe 
(III) and Pb (II).[37] The involvement of NH2 can be easily 
observed through the shift of corresponding peaks in N 
1s spectrum as shown in Fig. 7. Further amino groups 

played a significant role in fluorescence turn-on or turn-
off establishing the sensing property of MOF. Similarly, 
the involvement of –OH and –COOH in adsorption of 
multi heavy metal ions using MOF-808 with simultaneous 
coordination of Zr-O-M2+occurringas observed through Zr 
3d peaks as reported by Hang et al.[38] In addition, EXAFS is 
an excellent technique to predict the mode of adsorption. 
XPS and the near-edge X-ray absorption fine structure 
(NEXAFS) analysis was carried out to decipher the 
mechanism of adsorption revealing both N and O playing 
part in the chelation and with η2 motif based model by 
P-UiO-66-AO based MOF.[39] EXAFS is still an underused 
technique as not many literature reports are available. 

7.3 Computational Analysis
The mechanism predicted through abovementioned 

experimental techniques is generally validated through 
computational modeling and additional insights are also 
obtained. 

For instance, Qian et al.[40] reported DFT studies 
of UiO-66 functionalized with pyro metallic acid  and 
elucidated the Th adsorption mechanism by replacing 
water molecules with adsorbent groups and 3 geometries 
were optimized namely (i) Th(IV)@UiO-66-NH2 (ii) UiO-
66-NH-PMA(–CONH) (iii) Th (IV)@UiO-66-NH-PMA1 
and Th (IV)@UiO-66-NH-PMA2. The first and second 
model focused on interaction of Th with amino groups 
(as in UiO-66 NH2) and acyl amino C = O ligand + PMA 
respectively giving rise to distortion in latter polymer. The 
optimization using PMA was done through 2 models, one 
with ratio of 1:1 (Th4+/adsorbent) and other 1:2 and the 
closest distance was found for the former one. Additionally, 
NBO analysis was done in order to predict the best model. 
The complex with 1:2 ratio was found to be more plausible 
from all the calculations observed and all the  models 
are represented in Fig. 8. Also, modeling of entire MOF 
unit cell is computationally expensive and thus simpler 
models are usually employed. For instance we utilized 
CAU-1 NH2 MOF for Th remediation and aniline moiety 
was considered a surrogate as the binding sites of both 
are analogous.[41] Geometry optimization of MOF, ligand 
and MOF-ligand was done as shown in Fig. 9.The positive 
charge on the acceptor atom of Th decreased from 1.74 in 
the Th(OH)2(H2O)7

2+ complex to1.70 in the Th(OH)2(H2O)6−
aniline complex, suggesting an electronic charge transfer 
from ligand to metal during the complexation process. 
Also, the Wiberg bond index, which can be used to quantify 
the strength of the Th−N (aniline) bond in the complex, 
shows a value of 0.29. This indicates that a moderate 
interaction exists between the acceptor and donor atoms.

The main feature that distinguishes XPS from 
FT-IR is the detection of chemical  

 
state of an element in the former technique. 
Since adsorption is a surface phenomenon, 
the changes in XPS spectrum can be easily 
correlated with the mechanism of adsorption. 
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(II), Fe (III) and Pb (II). [37] The 
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through the shift of corresponding peaks in N 
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3d peaks as reported by Hang et al.[38] In 
addition, EXAFS is an excellent technique to 
predict the mode of adsorption. XPS and the 
near-edge X-ray absorption fine structure 
(NEXAFS) analysis was carried out to 

decipher the mechanism of adsorption 
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studies of UiO-66 functionalized with pyro 
metallic acid  and elucidated the Th 
adsorption mechanism by replacing water 
molecules with adsorbent groups and 3 
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Fig. 7. XPS high-resolution spectra of N 1s for MIL-101-NH2 before and after adsorption (Reproduced from ref. [37]) Fig. 7. XPS high-resolution spectra of N 1s for MIL-101-NH2 before 
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PMA respectively giving rise to distortion in 
latter polymer. The optimization using PMA 
was done through 2 models, one with ratio of 

1:1 (Th4+/adsorbent) and other 1:2 and the 
closest distance was found for the former 
one. Additionally, NBO analysis was done in 
order to predict the best model. The complex 
with 1:2 ratio was found to be more plausible 
from all the calculations observed and all the  

models are represented in Fig. 8. Also, 
modeling of entire MOF unit cell is 
computationally expensive and thus simpler 
models are usually employed. For instance 
we utilized CAU-1 NH2 MOF for Th 
remediation and aniline moiety was 
considered a surrogate as the binding sites of 
both are analogous.[41] Geometry 
optimization of MOF, ligand and MOF-
ligand was done as shown in Fig. 9.The 
positive charge on the acceptor atom of Th 
decreased from 1.74 in the Th(OH)2(H2O)7

2+ 

complex to1.70 in the Th(OH)2(H2O)6−

aniline complex, suggesting an electronic 
charge transfer from ligand to metal during 

the complexation process. Also, the Wiberg 
bond index, which can be used to quantify the 
strength of the Th−N (aniline) bond in the 
complex, shows a value of 0.29. This 
indicates that a moderate interaction exists 
between the acceptor and donor atoms. 

8. Conclusion & Future Potential  

In this report a brief description of MOF for 
the removal of heavy metal ions is described 
with emphasis given on synthesis methods 
and the factors affecting the adsorption 
characteristics. They are modified through 
formation of defective structure, ligand 

Fig. 8.The optimized configurations of (A) thorium hexahydrate [Th(H2O)6]4+, (B) the simplified UiO-66-NH2 polymer model, (C) 
the model of UiO-66-NH-PMA, (D) 1:1 ratio of Th(IV) adsorption on amino group, (E) 1:1 ratio of Th(IV) adsorption on C = O 

ligands of acylamino group and PMA, (F) 1:1 ratio of Th(IV) with C = O ligands on the PMA of UiO-66-NH-PMA chain, and (G) 
1:2 ratio of Th(IV) with C = O ligands on the same UiO-66-NH-PMA chains. ( Reproduced from ref. [41]) 

Fig. 8.The optimized configurations of (A) thorium hexahydrate [Th(H2O)6]4+, (B) the simplified UiO-66-NH2 polymer model, (C) the model 
of UiO-66-NH-PMA, (D) 1:1 ratio of Th(IV) adsorption on amino group, (E) 1:1 ratio of Th(IV) adsorption on C = O ligands of acylamino 

group and PMA, (F) 1:1 ratio of Th(IV) with C = O ligands on the PMA of UiO-66-NH-PMA chain, and (G) 1:2 ratio of Th(IV) with C = O 
ligands on the same UiO-66-NH-PMA chains. ( Reproduced from ref. [41])

functionalization or composite formation 
depending on the heavy metal ion of interest 

to be removed. Even though MOFs is a hot 

topic among material scientists, the practical 
application of MOF towards nuclear waste 
remediation is limited which is due to the 
concerns regarding acid instability of MOF. 
In addition, the radiation satiability of MOFs 
is not well known and hence a lot of R&D 
scope is there before these can be utilized in 
nuclear industry. 
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8. Conclusion & Future Potential 
In this report a brief description of MOF for the 

removal of heavy metal ions is described with emphasis 
given on synthesis methods and the factors affecting the 
adsorption characteristics. They are modified through 
formation of defective structure, ligand functionalization 
or composite formation depending on the heavy metal 
ion of interest to be removed. Even though MOFs is a hot 
topic among material scientists, the practical application of 
MOF towards nuclear waste remediation is limited which 
is due to the concerns regarding acid instability of MOF. 
In addition, the radiation satiability of MOFs is not well 
known and hence a lot of R&D scope is there before these 
can be utilized in nuclear industry.
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1. Introduction
Limited resources and adverse environmental effect of 

traditional fossil fuel encourage the scientific community 
to look for alternate energy source to meet the growing 
energy demand. Nuclear being high density green energy 
finds prominent attention as alternate to the traditional 
fossil fuel [1].  Currently, ~10% of the world’s total electricity 
is being contributed by nuclear energy with promising 
growth trend [2,3]. However, the radioactive nuclear wastes 
generated during nuclear fission poses a serious concern 
to the environment and needs to be sequestrated from the 
off gas mixture before gets released to the environment. 
Among the volatile radio-nuclides, radioactive iodine, 
especially 129I poses serious concern because of its long half 
life (t1/2 1.57×107 yrs), easy diffusion through air/water 
and active participation in bio-metabolism [4-6]. Therefore, 
a reliable and trustworthy approach must be implemented 
for efficient capture and storage of radioactive iodine [7, 8]. 

During last decades, various materials and methods 
have been developed for iodine capture. Out of them, 
adsorption through solid adsorbent is considered as the 
most realistic and convenient one. Activated carbon, 
TEDA-impregnated activated carbon, silver impregnated 
zeolite, mordenite, etc, are some of the much studied solid 
adsorbent [9-16]. However, low adsorption capacity, limited 
chemical & thermal stability, difficult to functionalization, 
poor recyclability and high cost of silver limit their real 
life application.

Over recent years, a new class of crystalline porous 
materials, known as metal organic frameworks (MOFs) 
have established their potential as alternate solid adsorbent. 
High specific surface area, tuneable porosity, optimum 
chemical & thermal stability and easy functionalization are 
some of the major advantages of MOFs over conventional 
adsorbents and hence attract the scientific community to 
explore them as alternate adsorbent for iodine [17-26]. Iodine 
adsorption by MOFs has been reported by many groups 
[19-22, 27-34]. Here, we have explored the effect on dithioglycol 
functionalization of HKUST-1 on its iodine adsorption 
characteristics. 

2.0 Experimental Section

2.1 Materials and methods
All chemicals and solvents (except toluene) used 

during experiments are of commercially available and were 
used without any further purification. Toluene was dried 
over sodium following standard procedure. 

2.2 Characterizations
Powder X-ray diffractions (PXRD) were recorded 

using SmartLab powder X-ray diffractometer (Rigaku, 
Japan) with Ni filtered Cu-Kα radiation. Fourier transform 
infrared spectra (FTIR) were recorded using Alpha-II 
spectrophotometer (Bruker make) in attenuated total 
reflection (ATR) mode in the wavenumber region 400 to 
4000 cm-1. Raman spectra were recorded using Horiba 
JobinYvon Raman Spectrometer (model: LabRAM 
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HR800, λ: 632.8 nm using He-Ne laser at 17 mW power). 
BET surface areas were calculated from N2 adsorption-
desorption isotherms measured at 77 K using AutosorbiQ 
Station 2 instrument. TG were recorded using Setsys 
Evolution 1750, SETARAM, France with a heating rate of 
5 °C/min under argon flow. SEM was recorded using field 
emission gun-scanning electron microscope (FEG-SEM), 
(make: ZEISS, model: AURIGA) 

2.3 Adsorption-desorption studies
Activated sample (50 mg) was taken in a 10 mL beaker 

and placed inside a seal chamber. 0.5 g crystalline I2 was 
taken in another 10 mL beaker and placed inside the same 
chamber as shown in Fig. 1. The whole chamber was kept 
at 80 °C. After a pre-defined time period, the sample was 
taken out from the seal chamber and kept at 80 °C for 2 
minutes to get rid of surface adsorbed iodine, cooled in 
desiccator and weighed. I2uptake, Q (g/g) was calculated 
gravimetrically based on equation 1.

highly crystalline powder was collected by filtration, 
washed repeatedly with water, ethanol and finally 
activated at 150 °C. 

2.5 Synthesis of dithioglycol functionalized 
[Cu3(BTC)2]n(HKUST-1-SH)

Dithioglycol functionalized [Cu3(BTC)2]n, denoted 
as HKUST-1-SH was synthesized using phase inversion 
technique. Typically, 2.0 g of activated HKUST-1 was 
dispersed in 15 mL dry toluene. Respective amount of 
dithioglycol (ρ = 1.12 g/mL) (0.20 mL for sample-I and 0.47 
mL for sample-II) was diluted with 2 mL dry toluene and 
added drop wise under stirring. After overnight stirring at 
room temperature, the powder was collected by filtration, 
washed with ethanol and dried at room temperature. 
Finally, the powder was activated by heating at 80 °C under 
vacuum for 24 hours.

3.0 Results and discussion

3.1 Characterization of HKUST-1 and HKUST-1-
SH

Reaction of Cu(NO3)2.3H2O with H3BTCin water-
ethanol mixture under solvothermal condition yielded blue 
colour highly crystalline [Cu3(BTC)2(H2O)3]n (HKUST-1). 
X-ray diffraction pattern of the synthesized powder 
along with SEM micrograph and simulated XRD pattern 
generated from single crystal XRD data are shown in 
Fig. 2. Excellent agreement between synthesized and 
simulated pattern signifies the formation and purity of the 
framework. Uniform micron size octahedrons with sharp 
edges are clearly visible from the SEM micrograph. Since 
the loosely bound axially coordinated water molecules in 
[Cu3(BTC)2(H2O)3]n can be easily de-coordinated by heating 
at 150 °C resulting unsaturated metal centre, HKUST-1 
can be considered as an excellent matrix for selective 
functionalization using post synthetic modification 
technique (PSM). Keeping that in mind, in the present 
work, the unsaturated copper centres in [Cu3(BTC)2]n 
has been successfully functionalized with dithioglycol 
following a reported procedure [27]. PXRD patterns of the 
functionalized samples (Fig. 2) can be easily indexed based 
on HKUST-1’s pattern and hence confirm the retention of 
three dimensional (3D) structure even after PSM. However, 
overall diffraction peak intensities decreases upon 
dithioglycol functionalization. The decrease in intensity is 
more in sample-II compare to sample-I and is in accordance 
with dithioglycol concentration. 

TG analyses (Fig. 2(iv)) also confirm the presence 
of dithioglycol in the PSM samples as indicated from 
their corresponding weight loss steps. Different sample 
shows different weight loss profiles. Weight loss in the 
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w1 and w2 are the weight of the sample before and after iodine adsorption. 

Iodine desorption from the host matrix was carried out by two ways: heating at 150 
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w1 and w2 are the weight of the sample before and after 
iodine adsorption.
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out by two ways: heating at 150 °C for 12 hours in air or 
by washing with ethanol at room temperature. 

 

 

 

Fig. 1. Experimental set up for I2 adsorption studies at 80 °C. 

 

 

2.4 Synthesis of [Cu3(BTC)2(H2O)3]n (HKUST-1) 

Highly crystalline [Cu3(BTC)2(H2O)3]n (HKUST-1) have been synthesized based on 
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highly crystalline powder was collected by filtration, washed repeatedly with water, ethanol 

and finally activated at 150 °C.  

2.5 Synthesis of dithioglycol functionalized [Cu3(BTC)2]n(HKUST-1-SH) 

Dithioglycol functionalized [Cu3(BTC)2]n, denoted as HKUST-1-SH was synthesized 

using phase inversion technique. Typically, 2.0 g of activated HKUST-1 was dispersed in 15 

mL dry toluene. Respective amount of dithioglycol (ρ = 1.12 g/mL) (0.20 mL for sample-I 

and 0.47 mL for sample-II) was diluted with 2 mL dry toluene and added drop wise under 

stirring. After overnight stirring at room temperature, the powder was collected by filtration, 

washed with ethanol and dried at room temperature. Finally, the powder was activated by 

heating at 80 °C under vacuum for 24 hours. 

 

3.0 Results and discussion 

3.1 Characterization of HKUST-1 and HKUST-1-SH 

Fig. 1. Experimental set up for I2 adsorption studies at 80 °C.

2.4 Synthesis of [Cu3(BTC)2(H2O)3]n (HKUST-1)
Highly crystalline [Cu3(BTC)2(H2O)3]n (HKUST-1) 

have been synthesized based on solvothermal technique. 
Typically, Cu(NO3)2.3H2O (3.0 g, 12.4 mmol) was dissolved 
in 150 mL 1:1 (v/v) water-ethanol mixture under stirring. 
H3BTC (1.2 g, 5.7 mmol) was added to the above solution 
and magnetically stirred for additional 30 minutes. The 
mixture was transfer to a Teflon-lined stainless steel 
autoclave and heated at 120 °C for 12 hours. Blue colour 
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Reaction of Cu(NO3)2.3H2O with H3BTCin water-ethanol mixture under solvothermal 

condition yielded blue colour highly crystalline [Cu3(BTC)2(H2O)3]n (HKUST-1). X-ray 

diffraction pattern of the synthesized powder along with SEM micrograph and simulated 

XRD pattern generated from single crystal XRD data are shown in Fig. 2. Excellent 

agreement between synthesized and simulated pattern signifies the formation and purity of 

the framework. Uniform micron size octahedrons with sharp edges are clearly visible from 

the SEM micrograph. Since the loosely bound axially coordinated water molecules in 

[Cu3(BTC)2(H2O)3]n can be easily de-coordinated by heating at 150 °C resulting unsaturated 

metal centre, HKUST-1 can be considered as an excellent matrix for selective 

functionalization using post synthetic modification technique (PSM). Keeping that in mind, 

in the present work, the unsaturated copper centres in [Cu3(BTC)2]n has been successfully 

functionalized with dithioglycol following a reported procedure [27]. PXRD patterns of the 

functionalized samples (Fig. 2) can be easily indexed based on HKUST-1’s pattern and hence 

confirm the retention of three dimensional (3D) structure even after PSM. However, overall 

diffraction peak intensities decreases upon dithioglycol functionalization. The decrease in 

intensity is more in sample-II compare to sample-I and is in accordance with dithioglycol 

concentration.  
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(i) (i) (iii) (iv)

Fig. 2(i) PXRD patterns of the synthesized and simulated HKUST-1; (ii) FESEM images of Synthesized HKUST-1; (iii) PXRD patterns after 
dithioglycol functionalization; (iv) TGA profiles of HKUST-1 and HKUST-1-SH samples, recorded under flowing Argon with heating rate 5 
°C/minute.

temperature range 95 – 155 °C is due to water coordinated 
to copper centre and the proportion gradually decrease 
from HKUST-1 to sample-I to sample-II, attributing its 
substitution by dithioglycol. Weight loss in the temperature 
range 160 – 260 °C is due to dithioglycol and is more 
(15 %) in case of sample-II compare to sample-I (4 %) 
indicating higher extent of functionalization in sample-
II than sample-I. Structural breakdown and framework 
decomposition takes place at 280 – 380 °C with sharp 
weight loss. FTIR Spectra (Fig. 3) of HKUST-1 matches 
well with the spectra reported by P. Musto et. al [28]. Peaks 
at 728 and 752 cm-1 are due to Cu centre chelation with 
O-C=O groups. Aromatic ring stretching vibration appears 
at 1372 cm-1. Bands around 1630 and 1445 cm-1 are due to 
asymmetric and symmetric stretching vibration of –O-C-O- 
group. Peak at 480 cm-1 is due to Cu-O stretching vibration. 
FTIR spectra of dithioglycol functionalized samples 
(sample-I & II) are identical to the spectra reported by F. Ke 
and his group [29]. Presence of dithioglycol is indicated from 
the absorption bands at 682 and 2560 cm-1 corresponding 

 

Fig. 3. (i) FTIR spectra of: (a) [Cu3(BTC)2(H2O)3]n (HKUST-1); (b) HKUST-1-SH  

(sample-I) and (c) HKUST-1-SH (sample-II).  

 

3.2 BET measurement 

Porous nature of the powders were find out from N2 adsorption-desorption isotherms 

measured at 77 K. Isotherms are shown in Fig. 4 and the corresponding characteristic 

porosity parameters are tabulated in Table-1. HKUST-1 shows a specific surface area of 946 

m2/g and is in good agreement with the reported value [30]. Considerable modifications in 

isotherm nature are observed after PSM with decrease in surface area. Such decrease in 

surface area and pore volume upon PSM suggests partial occupation of some of the inner 

pore space with dithioglycol. 

Fig. 3. (i) FTIR spectra of: (a) [Cu3(BTC)2(H2O)3]n (HKUST-1); (b) 
HKUST-1-SH (sample-I) and (c) HKUST-1-SH (sample-II).

to ν(C-S) and ν(S-H), respectively. Gradual increase of 
relative band intensities characteristic to dithioglycol from 
sample-I to sample-II also reflect the presence of higher 
concentration of dithioglycol in sample-II than sample-I 
and hence higher extent of functionalization in sample-II 
than sample-I. 

3.2 BET measurement
Porous nature of the powders were find out from 

N2 adsorption-desorption isotherms measured at 77 K. 
Isotherms are shown in Fig. 4 and the corresponding 
characteristic porosity parameters are tabulated in Table-1. 
HKUST-1 shows a specific surface area of 946 m2/g and is in 
good agreement with the reported value [30]. Considerable 
modifications in isotherm nature are observed after PSM 
with decrease in surface area. Such decrease in surface area 
and pore volume upon PSM suggests partial occupation of 
some of the inner pore space with dithioglycol.

 

Fig. 4 N2 adsorption-desorption isotherms at 77 K of (i): (a) HKUST-1; (b) HKUST-1-SH  

(sample-I) & (c) HKUST-1-SH (sample-II). 

 

Table 1 Characteristic porosity parameters. 

Sample SBET (m2/g) Vt (cc/g) DPore (nm) 

HKUST-1 946.07 0.55 2.33 

HKUST-1-SH (sample-I) 324.40 0.22 2.71 

HKUST-1-SH (sample-II) 139.10 0.11 3.09 

 

3.3 Adsorption - desorption studies 

In order to evaluate the effect of dithioglycol functionalization on I2 adsorption 

characteristics of HKUST-1, time dependent I2 adsorption performance of HKUST-1, 

HKUST-1-SH (sample-I & II) has been evaluated at 80 °C through vapour diffusion 

technique. Detail procedures are mentioned in experimental section. Typically, I2 adsorption 

was measured gravimetrically after exposing the sample to excess I2 vapour in a seal 

container for a pre-defined duration. Figure 5 shows the time dependent I2 uptake by the 

powder samples and fittings with respect to pseudo first order, pseudo second order and 

particle diffusion kinetic models. I2 adsorption by much studied HKUST-1 has been 

previously reported by many groups [21, 31]. In the present study also, I2 adsorption by 

HKUST-1 has been carried out and shown in Fig. 5. Upon dithioglycol functionalization, 

there observed a profound improvement in the adsorption characteristics. Unlike HKUST-1, 

Fig. 4 N2 adsorption-desorption isotherms at 77 K of (i): (a) HKUST-1; 
(b) HKUST-1-SH (sample-I) & (c) HKUST-1-SH (sample-II).
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Table 1 Characteristic porosity parameters.

Sample SBET 
(m2/g)

Vt (cc/g) DPore (nm)

HKUST-1 946.07 0.55 2.33

HKUST-1-SH 
(sample-I)

324.40 0.22 2.71

HKUST-1-SH 
(sample-II)

139.10 0.11 3.09

3.3 Adsorption - desorption studies
In order to evaluate the effect of dithioglycol 

functionalization on I2 adsorption characteristics of 
HKUST-1, time dependent I2 adsorption performance 
of HKUST-1, HKUST-1-SH (sample-I & II) has been 
evaluated at 80 °C through vapour diffusion technique. 
Detail procedures are mentioned in experimental section. 
Typically, I2 adsorption was measured gravimetrically 
after exposing the sample to excess I2 vapour in a seal 
container for a pre-defined duration. Figure 5 shows the 
time dependent I2 uptake by the powder samples and 

fittings with respect to pseudo first order, pseudo second 
order and particle diffusion kinetic models. I2 adsorption by 
much studied HKUST-1 has been previously reported by 
many groups [21, 31]. In the present study also, I2 adsorption 
by HKUST-1 has been carried out and shown in Fig. 5. 
Upon dithioglycol functionalization, there observed a 
profound improvement in the adsorption characteristics. 
Unlike HKUST-1, I2 adsorption by HKUST-1-SH (Fig. 5(i)) 
takes place through two well separated steps: an initial 
fast adsorption followed by a comparatively sluggish 
adsorption. Sample-II having higher dithioglycol 
concentration shows superior saturation capacity than 
sample-I. Sample-I can adsorb 0.6 g/g of I2 in the first step 
within 2 hours and altogether 0.9 g/g within 20 hours 
before reaching the saturation. Sample-II can adsorb 1.0 
g/g I2 in the first step within 4 hours and altogether 1.8 g/g 
within 18 hours before reaching the saturation. 

To explore the adsorption mechanism, kinetic data 
were fitted with three different adsorption kinetic models, 
namely, pseudo-first order, pseudo-second order and 
particle diffusion models (Fig. 5). It can be seen from the 
fitted plots that the data can be better fitted with pseudo-
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and altogether 1.8 g/g within 18 hours before reaching the saturation.  
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Fig. 5(a) Time dependent gravimetric I2 adsorption characteristics by powder samples at 80°C; (b) Pseudo first order kinetics model fitting;  
(c) Pseudo second order kinetics Model fitting; (d) Particle diffusion model fitting. 
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second order model than pseudo-first order (considering 
correlation coefficient, R2) indicating the presence of both 
physical and chemical interactions during the adsorption 
process. Presence of multi-linear portions in uptake (Qt) 
vs time 1/2 plots for both powders as well as composite 
beads indicate the involvement of more than one steps in 
the adsorption process [32].

Desorption of iodine from the host matrix has been 
carried out using both thermal as well as soft chemical 
methods. TG plots of sample-II after different percentages 
of I2 adsorption are shown in Fig. 6. In line with the 
above second order kinetic model, thermal desorption of 
iodine takes place at two temperatures. Desorption at low 
temperature (~150 °C) is due to physically bound iodine 
and the desorption after 400 °C is due to chemically bound 
iodine. Physically bound iodine can also be desorbed by 
washing with ethanol at room temperature.

33726). Though, at lower concentration of adsorbed iodine, 
diffraction peaks corresponding to γ-CuI are only seen, 
at higher concentration of adsorbed iodine, additional 
set of peaks are also seen with gradual increase in peak 
intensities with adsorbed iodine concentrations. Therefore, 
structural breakdown of the framework takes place during 
adsorption due to strong interaction between copper and 
iodine. In the subsequent step, CuI acts as secondary 
adsorbent and converted into CuI@I2 through molecular 
iodine adsorption. In Raman studies (Fig. 7(ii)), five peaks 
(109, 124, 162, 181 & 210 cm-1) are observed and the relative 
peak intensities changes depending upon adsorbed iodine 
concentrations. These peaks can be divided into two sub-
group characteristic of two steps in adsorption vs time 
plot (Fig. 5(a)). In all cases, peaks at 109, 124 & 162 cm-1 are 
seen. Peaks at 124 cm-1 are due to CuI [33]. Peaks at 109 & 162 
cm-1 can be assigned as due to I3

- and / or I5
-, respectively 

[54, 55]. Formation of I5
- might have taken place through 

[(trimesic acid)10H]I5 formation as was reported by B. 
Orel et. al [34] through framework decomposition and CuI 
formation. With further adsorption of iodine (> 64 wt% 
for sample-I & > 110 wt% for sample-II), two additional 
peaks at 181 & 210 cm-1 characteristic of molecular iodine 
can be seen. It is clearly visible from the spectra that the 
relative peak intensities corresponding to molecular iodine 
increases with increase in adsorbed iodine concentrations 
which signifies the adsorption of more and more molecular 
iodine in the second step of uptake vs time plots (Fig. 5 ). 
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Fig. 6. TG plots of: (a) CuI(C2S2H6)0.25 obtained after washing I2 adsorbed sample-II with  

ethanol; (b) CuI(C2S2H6)0.25 after I2 adsorption; (c) sample-II@I2 (I2adsorbed: 36 wt%); (d) 

sample-II@I2 (I2adsorbed: 110 wt%) and (e) sample-II@I2 (I2adsorbed:  179 wt%). 

Heatingrate:5 °C/min under flowing argon. 

 

3.4 XRD and  Raman spectroscopic studies 

XRD, Raman and X-ray photoelectron spectroscopic (XPS) studies has been carried 

out to elucidate the nature of interaction between iodine and the host matrix. Contrary to 

HKUST-1 where iodine adsorption takes place through intra-molecular hydrogen bonding 

Fig. 6. TG plots of: (a) CuI(C2S2H6)0.25 obtained after washing I2 adsorbed 
sample-II with  ethanol; (b) CuI(C2S2H6)0.25 after I2 adsorption; (c) 
sample-II@I2 (I2adsorbed: 36 wt%); (d) sample-II@I2 (I2adsorbed: 110 
wt%) and (e) sample-II@I2 (I2adsorbed:  179 wt%). Heatingrate:5 °C/
min under flowing argon.

3.4 XRD and  Raman spectroscopic studies
XRD, Raman and X-ray photoelectron spectroscopic 

(XPS) studies has been carried out to elucidate the 
nature of interaction between iodine and the host 
matrix. Contrary to HKUST-1 where iodine adsorption 
takes place through intra-molecular hydrogen bonding 
interactions [21], in dithioglycol functionalized HKUST-1, 
iodine adsorption takes place following a completely 
different pathway. Fig. 7 (i) represents the XRD patterns 
of sample-II after various amount of iodine adsorption. 
Thus, upon iodine adsorption, characteristic diffraction 
peaks due to HKUST-1-SH disappear with the formation 
of some strong peaks attributed to γ-CuI (ICSD No. 

Fig. 7(i) PXRD patterns of sample-II after different weight % of I2 
adsorption; (ii) Raman spectra of sample-II after different weight % 
of I2 adsorption.

interactions [21], in dithioglycol functionalized HKUST-1, iodine adsorption takes place 

following a completely different pathway. Fig.7(i) represents the XRD patterns of sample-II 

after various amount of iodine adsorption. Thus, upon iodine adsorption, characteristic 

diffraction peaks due to HKUST-1-SH disappear with the formation of some strong peaks 

attributed to γ-CuI (ICSD No. 33726). Though, at lower concentration of adsorbed iodine, 

diffraction peaks corresponding to γ-CuI are only seen, at higher concentration of adsorbed 

iodine, additional set of peaks are also seen with gradual increase in peak intensities with 

adsorbed iodine concentrations. Therefore, structural breakdown of the framework takes 

place during adsorption due to strong interaction between copper and iodine. In the 

subsequent step, CuI acts as secondary adsorbent and converted into CuI@I2 through 

molecular iodine adsorption. In Raman studies (Fig. 7(ii)), five peaks (109, 124, 162, 181 & 

210 cm-1) are observed and the relative peak intensities changes depending upon adsorbed 

iodine concentrations. These peaks can be divided into two sub-group characteristic of two 

steps in adsorption vs time plot (Fig. 5(a)). In all cases, peaks at 109, 124 & 162 cm-1 are 

seen. Peaks at 124 cm-1 are due to CuI [33]. Peaks at 109 & 162 cm-1 can be assigned as due 

to I3
- and / or I5

-, respectively [54, 55]. Formation of I5
- might have taken place through 

[(trimesic acid)10H]I5 formation as was reported by B. Orel et. al [34] through framework 

decomposition and CuI formation. With further adsorption of iodine (> 64 wt% for sample-I 

& > 110 wt% for sample-II), two additional peaks at 181 & 210 cm-1 characteristic of 

molecular iodine can be seen. It is clearly visible from the spectra that the relative peak 

intensities corresponding to molecular iodine increases with increase in adsorbed iodine 

concentrations which signifies the adsorption of more and more molecular iodine in the 

second step of uptake vs time plots (Fig. 5 ).  

 

 
(i) (ii)

4. Conclusion
In summary, here we have synthesized dithioglycol 

functionalized HKUST-1 and evaluated its iodine 
adsorption performance at 80 °C. The framework shows 
improve adsorption characteristics compare to pristine 
HKUST-1 with much fast kinetics. Employing PXRD, 
TG and Raman spectroscopy, the nature of host-guest 
interaction taking place during the adsorption process has 
been established. It has been observed that unlike HKUST-1 
where iodine adsorption is taking place through intra-
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molecular hydrogen bonding interactions, the adsorption 
in dithioglycol functionalized HKUST-1 is taking place 
through both physisorption and chemisorption means. 
During iodine adsorption, transformation of HKUST-1-SH 
to γ-CuI and γ-CuI into γ-CuI@I2 is clearly evidenced from 
Raman studies. 
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Abstract
Metal Organic Frameworks (MOFs) are crystalline and highly porous materials. MOFs have shown 
potential applications in gas storage and gas separation due to their high porosity and well regulated pore 
network. High chemical and thermal stability have enhanced their applications in various fields. MOFs 
are also shown to have high selectivity and uptake capacity for noble gases which is primarily achieved 
through fine tuning of pore network of MOFs. High radiation stability of MOFs along with high separation 
efficiency of noble gases have increased the potential of MOFs in storage and separation of noble radioactive 
gases which are otherwise released in atmosphere. MOFs showing scintillating properties along with high 
uptake capacity of noble gases are suitable for detecting and sensing the radioactive noble gases. Herein, 
we present a review of recent studies focused on MOFs applications in separation, capture and sensing/
detection of noble radioactive gases.

1. Metal–Organic Frameworks
Metal–Organic Frameworks (MOFs) represent the 

tremendous beauty of chemical structures following 
the concepts of two different disciplines of chemistry 
i.e. inorganic and organic chemistry. MOFs are highly 
porous and crystalline materials following the isoreticular 
chemistry concept of synthesis.[1] Yaghi et al. have reported 
the first synthesis of crystalline and porous MOFs.[2] MOFs 
are made of metal nodes linked with organic linkers, and 
both the constituents of MOFs provide possibilities of large 
variations. Till date, around 90,000 MOF structures have 
been synthesised. The crystal structure of MOFs are derived 
through coordinations between metal ions and organic 
linkers which exhibit the interconnected pore network 
leading to higher porosity and large surface area (Figure 
1). Till date, a maximum porosity of ~ 90% of total volume 
and the surface area up to 6000 m2/g has been reported.
[3] In addition, MOFs offers structural flexibility, tunable 
porosity, variable organic functionality, and very high 
physical/thermal stability. These exceptional properties of 
MOFs have led to their applications in different fields viz. 
energy, sensing and gas storage. Due to the large porosity 
and well-defined interconnected pore-network of MOFs, 
they have found tremendous applications in the storage 
and separation of gases.[4]

As mentioned before, MOFs consist of organic linkers 
called primary building units (PBU) coordinated with 
metal ions or clusters called as secondary building units 
(SBU). Depending on constituent units as well as the 
resultant structure, MOFs are classified into different 

groups. For example, isoreticular MOFs consist of [Zn4O]6+ 
connected to aromatic carboxylate;[5] Zeolitic Imidazolate 
Frameworks (ZIFs) consist of different metal ions (Zn, Co, 
Fe, Mn, Cd, etc.) connected to derivatives of imidazolate 
linkers;[6] Porous Coordination Networks (PCNs) are 
stereo-octahedron materials having a hole−cage−hole 
topology with a 3D structure;[7] Materials Institute Lavoisier 
(MIL) MOFs consists of different elements (Al, Cr) linked 
with organic linkers having two  carboxylic functional 
groups;[8] Porous Coordination Polymers (PCPs) consists 
of transition metals linked with carboxylic acid, pyridine, 
and its derivative;[9] University of Oslo (UiO) MOFs 
consists of Zr6(μ3-O)4(μ3-OH) connected to dicarboxylic 
acid[10]. In addition, other groups of MOFs have been 
classified as Northwestern University (NU),[11] Pohang 
University of Science and Technology (POST-n),[12] Dresden 
University of Technology (DUT-n family),[13] University 
of Nottingham (NOTT-n),[14] Hong Kong University of 
Science and Technology (HKUST-n),[15] and Christian-
Albrechts-University (CAU-n family)[16]. Synthesis of 
MOFs is carried out using different methods viz. room 
temperature solvent assisted method,[17] electrochemical 
method,[18] microwave-assisted method,[19] solvothermal 
method,[20] mechanochemical method,[21] and sonochemical 
method[22]. The choice of synthesis method of MOF 
depends on various factors such as the constituent of 
MOFs (PBU and SBU), topology and crystal size of the 
product, amount of the product, use of environment-
friendly solvents and applications of the product etc. 
Among the reported method, solvothermal synthesis is 
preferred to synthesize large-size single crystals of MOFs, 
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whereas mechanochemical and sonochemical methods are 
considered as high throughput synthesis method. In spite 
of different synthesis methods, a strong emphasis is always 
given to the environment-friendly room temperature 
synthesis method of MOFs. 

2. Gas Adsorption and Separation Using Porous 
Materials

Gas separation is a crucial process for producing the 
purified gases having applications in different industries, 
and hence research towards the development of an 
economical gas separation process is continuously pursued 
for the separation of different gas mixtures. In general 
different gas separation techniques such as cryogenic 
distillation, membrane-based, and adsorption-based 
technologies are being employed in different industries.
[23–25] Cryogenic distillation is an energy-intensive process, 
hence efforts are continuously being made to develop 
technologies for gas separation using membrane-based 
or adsorption-based technologies for the separation of all 
types of gases. With the development of synthetic zeolites 
in the 1940s, adsorption-based separation processes have 
become prominent in the gas separation industries.[26–28] 
The adsorption-based separation using various adsorbents 
have become highly useful for H2 and CH4 purifications, 
CO2 capture, CO removal for fuel cell technology etc. In 
addition porous materials-based technologies have been 
developed for the desulfurization of transportation fuels 
and other processes required for clean environment. 

In adsorptive separation processes using porous 
materials, gas separation efficiently is based on the 
difference in the adsorption efficiency of the adsorbent 
towards different gases present in the mixture. In 
this process, characteristics of the adsorbent in both 
adsorption equilibrium and kinetics play a deterministic 
role towards the overall efficiency of the separation 
process.[29,30] For the real-life application of any porous 
material for the separation of gases, it should possess  
high mechanical properties, good adsorption capacity, 
selectivity, adsorption kinetics and regenerability. In order 

to achieve all these characteristics, the adsorbent should 
be highly porous having an interconnected pore network 
and high surface area that allow adsorbate molecules to 
approach the interior surface. Porous materials such as 
zeolites, silica gel, clays, inorganic and polymeric resins, 
porous organic materials, activated carbons, etc. have 
been explored for gas separation and some of them are 
being used in the industries.[26,31–35] As mentioned before 
the adsorption capacity and selectivity of an adsorbent 
are two main characteristics that are directly related to the 
efficiency of the adsorptive gas separation. Both of these 
characteristics directly or indirectly depend on the type 
of pores and pore network of the adsorbent as well as the 
equilibrium pressure and temperature.

The gas separation using porous materials occurs 
through different mechanisms (Fig. 2). The molecular-
sieving mechanism of separation is based on the size/
shape exclusion of certain components of the mixture due 
to the limited aperture size present in the pore network of 
the porous materials. The kinetic separation mechanism 
is based on the different diffusing rates of different 
components of the gas mixture within the pore network 
of the porous material. The quantum sieving effect is also 
based on the different diffusing rates of light molecules in 
the micropores because of the quantum effect. In addition, 
the equilibrium separation mechanism is based on the 
preferential adsorption of certain components of the 
gas mixture leading to the separation of the gases using 
the porous materials. Various industrially relevant gas 
separations are carried out following these mechanisms: 
drying of gases using 3A zeolites and separation of 
normal paraffins from iso-paraffins using 5A zeolites are 
the examples of molecular-sieving which is based on the 
size/shape exclusion mechanism.[27] The separation and 
production of N2 directly from the air,  CH4 from CO2 
using a carbon molecular sieve, and removal of N2 from 
CH4 with 4A zeolites for upgradation of the natural gas 
are the examples of kinetic separation which is based on 
the diffusing rates of different components of gas mixture 
within the pore network of porous materials.[24] In the case 
of separation of light molecules such as H2, D2 , T2 and He 
through porous materials having micropores comparable 
to the de Broglie wavelength of these molecules quantum 
sieve effect becomes crucial and leads to separation of 
isotopes of these gases. In the case of thermodynamics 
equilibrium separation, gas-adsorbent surface interaction 
is highly crucial and determines the separation efficiency. 
The gas-adsorbent interaction depends on the surface 
characteristics of the adsorbent as well as the properties 
like polarizability, magnetic susceptibility, permanent 
dipole moment, and quadrupole moment of the adsorbate 
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attributed to limited aperture size which excludes the larger 
size gases from adsorption in the pore network. MOFs 
such as Mg3(ndc)3,[47] PCN-13,[48] Sm4Co3(pyta)6(H2O)x,[49] 
Cu(F-pymo)2,[50] and Zn2(cnc)2-(dpt)[51] have shown highly 
selective adsorption of H2 over N2 due to size exclusion. 
Similarly, Mg3(ndc)3,[47]  Zn(dtp),[52] and PCN-13[48] have 
shown preferential adsorption of similar molecular size 
gases (O2 over N2) at low-temperature due to size exclusion 
effects.

As mentioned before, in addition to pore size 
exclusion, adsorbate-surface interaction also plays a 
deterministic role in gas-adsorptive separation using 
porous materials. Cu2(pzdc)2(pyz)[53] shows preferential 
adsorption of C2H2 over CO2 due to strong H-bonding 
between C2H2 and O atoms from the surface. Cu(hfipbb)
(H2hfipbb)0.5,[54] Zn(tbip),[55] and Zn(bdc)(ted)0.5.[56] show 
preferential adsorption of organics viz. MeOH, EtOH, and 
dimethylether over water as the channels of these MOFs 
are highly hydrophobic. Zn2(ndc)2(dpni)[57] and Mn(ndc)
[58] are shown to preferentially adsorb CO2 over CH4 due to 
strong binding of CO2 having high quadrupole moment at 
open metal sites in the frameworks (Figure 3). Even though 
flexible MOFs undergo pore-structure modifications due 
to framework-gas interaction and gas pressure, they also 
show significant separation selectivity for different gas 
mixtures attributed to different factors. For example, 
Cd(pzdc)(bpee)[59] shows preferential adsorption of water 
and methanol compared to ethanol, tetrahydrofuran and 
dimethyl ketone. Selective adsorption of benzene over 
cyclohexane has been observed in Cu(etz).[60] Similarly, 
significant selectivity has been observed in propene/
propane separation using ZIF-8 and its different derivatives.
[61-66] All these preferential adsorption-based separations in 
these flexible MOFs are attributed to molecular sieving 
through the modified pore structure. Flexible MIL-53 
shows different adsorption characteristics for CH4 and CO2 
due to different host-guest interactions, and can be used for 
their separation using hydrated and dehydrated forms of 
MIL-53.[67] In the case of flexible MOFs, gate-opening under 
external stimuli has also led to selective separation of gas 
mixtures having kinetic diameter larger than the inherent 
pore size. ZIF-20[68] having a pore aperture size of 2.8 Å 
has shown very high adsorption of CO2 as compared to 
CH4 due to the gate-opening effect. Cu(dhbc)2(4,4’-bpy)[69] 

shows that the pressure required for gate-opening under 
O2, N2, and Ar is distinctly different which confirms that 
gases in this type of MOFs can be selectively adsorbed at 
different pressures (Figure 4). Similar observations have 
been observed in different ZIFs viz. ZIF-8, ZIF-7, ZIF-9 
and their mixed metal and mixed linker derivatives.[70–76]
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Figure 2. Gas separation through molecular sieving (Upper Panel) and 
preferential adsorption mechanism (Lower panel).

molecules. Li et al.[36] have reviewed the gas separation 
process using different porous materials with a special 
emphasis on MOFs.

3. Metal–Organic Framework for Gas Adsorption 
and Separations

As mentioned earlier, a huge number of scenarios 
are possible for the design of MOFs based on different 
combinations of PBU and SBUs. It leads to significant 
tunability in structure and properties of MOFs which 
can be systematically realized using the power of organic 
synthesis. [37–46] As a result, MOFs with very high and well-
defined porosity having the specific surface characteristics 
can be synthesized using very mild conditions. Due to 
the high porosity and favourable characteristics such as 
large surface areas, adjustable pore sizes, and controllable 
surface properties, most of the MOFs are considered as 
ideal adsorbents for gas storage and separation. In addition, 
some of the MOFs are highly flexible under stimuli such 
as temperature, pressure, and the presence of the guest 
molecules. The flexible frameworks are capable of pressure 
and temperature-dependent molecular sieving which 
is not possible for the conventional porous adsorbents. 
Gas adsorptive separation is a complicated process and 
depends on the different characteristics of the adsorbents. 
In the case of MOFs, molecular sieving-based selective 
adsorption of gases has been confirmed in different MOFs. 
The molecular sieving effect in the case of MOFs has been 
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and hence very expensive. In order to reduce the cost of 
their production and separation, alternative technologies 
are under development for the separation and preferential 
adsorption of Xe and Kr. These alternatives are divided 
into two types (i) selective adsorption by dissolution in 
an appropriate solvent and (ii) physisorption on porous 
materials [77–80] The first process is similar to cryogenic 
distillation but the separation factor depends on the 
solubility of gases in the solvent which also depends 
on the temperature and pressure. Some studies using 
dichlorodifluoromethane (refrigerant-12, R-12) as a process 
solvent[81] has shown a very high separation factor for 
85Kr. Additionally,  CO2 has been proposed as a solvent 
for the process as it has many advantages as compared 
to dichlorodifluoromethane. The issues with this process 
are solvent leakage, volatilization and radiolysis which 
have to be circumvented before its implementation at a 
large scale. Another promising alternative for noble gas 
separation is based on their physisorption on microporous 
materials having high porosity and large surface areas. 
These materials offer options for tuning the gas-adsorbent 
surface interaction sometimes leading to enhancement in 
the selectivity of gas adsorption.  Among porous materials, 
zeolites have been used to investigate the adsorption and 
separation of noble gases [79,82]. Zeolites like NaA and NaX 
show poor selectivity (separation factor 4–6) with low 
capacities of 20–30%.[82] Commercially available activated 
charcoals have also been studied for this purpose.[83] 

However, their applications are not recommended as they 
pose a fire hazard risk due to the presence of NOx in the gas 
stream. As a result of poor selectivity and low capacities 
and other above-mentioned issues, the above-discussed 
porous materials are not being used for the capture of noble 
gases though they are being used for many other types of 
gas separations based on the adsorption characteristics.[84]

example, Cd(pzdc)(bpee)[59] shows preferential adsorption of water and methanol compared to 

ethanol, tetrahydrofuran and dimethyl ketone. Selective adsorption of benzene over cyclohexane 

has been observed in Cu(etz).[60] Similarly, significant selectivity has been observed in 

propene/propane separation using ZIF-8 and its different derivatives.[61-66] All these preferential 

adsorption-based separations in these flexible MOFs are attributed to molecular sieving through 

the modified pore structure. Flexible MIL-53 shows different adsorption characteristics for CH4 

and CO2 due to different host-guest interactions, and can be used for their separation using 

hydrated and dehydrated forms of MIL-53.[67] In the case of flexible MOFs, gate-opening under 

external stimuli has also led to selective separation of gas mixtures having kinetic diameter larger 

than the inherent pore size. ZIF-20[68] having a pore aperture size of 2.8 Å has shown very high 

adsorption of CO2 as compared to CH4 due to the gate-opening effect. Cu(dhbc)2(4,4’-bpy)[69] 

shows that the pressure required for gate-opening under O2, N2, and Ar is distinctly different 

which confirms that gases in this type of MOFs can be selectively adsorbed at different pressures 

(Figure 4). Similar observations have been observed in different ZIFs viz. ZIF-8, ZIF-7, ZIF-9 

and their mixed metal and mixed linker derivatives.[70–76] 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. (a) Single crystal structure of Zn2(ndc)2(dpni); (b) CO2 and CH4 uptake capacity and 

selectivity of Zn2(ndc)2(dpni); Reprint with permission from Ref. [57]. 
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Figure 4.  (a) Nitrogen adsorption (filled circles) and desorption isotherms (open circles) for 

[Cu(dhbc)2(4,4′-bpy)] at 298 K. Blue and red dashed lines were determined by fitting the linear 

parts of the Langmuir plots in the higher (from 83 to 122 atm) and lower (from 8 to 34 atm) 

pressure ranges, respectively; (b) Adsorption (filled circles) and desorption (open circles) 

isotherms of N2, CH4, CO2 and O2 at 298 K. (Reprint permission from ref. [69]). 
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adsorption.  Among porous materials, zeolites have been used to investigate the adsorption and 

separation of noble gases [79,82]. Zeolites like NaA and NaX show poor selectivity (separation 

factor 4–6) with low capacities of 20–30%.[82] Commercially available activated charcoals have 

also been studied for this purpose.[83] However, their applications are not recommended as they 

pose a fire hazard risk due to the presence of NOx in the gas stream. As a result of poor 

selectivity and low capacities and other above-mentioned issues, the above-discussed porous 

materials are not being used for the capture of noble gases though they are being used for many 

other types of gas separations based on the adsorption characteristics.[84] 
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Figure 5.  Thermodynamic properties (Polarizability, Boiling points 
and kinetic diameter) of noble gases.

5. Radioactive Noble Gases
Volatile radionuclides are produced during  the fission 

of uranium and plutonium in a nuclear reactor which are 
released in the off-gas stream of the reprocessing plant 
during the reprocessing of the nuclear fuel, and finally, 
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these volatile products are released into the environment 
with utmost care. These radionuclides are 14C, 129I, 3H and 
noble gases. The noble gases isotopes produced in the 
nuclear industries are 41Ar (activation product), 85Kr, 87Kr, 
88Kr, 133Xe, 135Xe and 138Xe. The volatile radionuclides in the 
off-stream of a reprocessing plant operated on aqueous 
reprocessing of the spent fuel contain mixture of noble 
gases along with tritiated water, different forms of iodine 
(H129I, 129I2, and organic iodides). In general, iodine and 
tritium are captured from the off-stream whereas CO2 and 
Kr are released in the environment.[84] In order to reduce 
the radioactive hazard to the environment, separation and 
capture of noble gases (Kr and Xe) is highly important. 
The capture of these gases becomes more important for 
molten salt breeder reactors where the gaseous fission 
product reaches to the headspace of the reactor because of 
its particular type of design. These gases are swept away 
by the cover gas, and have to be captured to clean the cover 
gas. For the capture and separation of these noble gases, 
the most promising process would be capable of separating 
these gases from the air as well as from each other at room 
temperature and pressure. 

In the case of reprocessing plants, off-stream primarily 
contains only non-radioactive Xe because of a short half-
life of 127Xe (36.3 days). As a result of short half-life, 127Xe 
becomes nonradioactive during the cooling period of the 
spent fuel which is approximately 5 years and longer. 
However, 85Kr having long a half-life (10.8 years) remains 
present in its radioactive form in the off-stream. Xe 
production is 10 times higher than Kr during the fission 
process. Hence, 85Kr should be captured and stored to 
reduce the release of radioactivity in the environment, and 
Xe separation is required to reduce the waste of noble gases 
which have potential applications in various industries.

Another radioactive noble gas of concern is radon 
(Rn) which is a component of air and it is the major 
fraction (∼ 40%) of the natural radiation to the public[85] 
Radioisotopes of Rn (219Rn, 220Rn, and, dominantly, 222Rn) 
are produced in the natural decay series of 235U, 232Th, and 
238U.[86] Rn is present in the ultralow concentration in air 
but it is encouraged to control the radiation exposure to 
Rn radiation as low as possible especially in radioactive 
laboratories where Rn concentration may be high. In 
addition, Rn concentration control in air is also required 
for rare event physics experiments wherein decay of Rn 
can create a spurious pulse.[87] The techniques currently 
used for Rn activity control are either physical blocking or 
ventilation-based but these techniques are expensive and 
not very efficient. Hence, new economical methods based 
on adsorption by porous materials are being developed 
for capture of Rn from air.

6. Metal Organic Frameworks for Radioactive 
Noble Gases

6.1. Xe capture and Xe/Kr separation
As mentioned before, some of the porous materials 

such as zeolites and activated carbons have been explored 
for the separation of noble gases. The storage capacity 
of these materials was observed to be very limited, and 
could not be enhanced as tuning of their pore architecture 
is not possible. On the other hand, MOFs consist of metal 
nodes connected with organic linkers providing ample 
opportunities for fine-tuning the pore architecture of 
the frameworks.  In the case of MOFs, pore architecture 
is determined by coordination modes, geometry, 
directionality, and functionality of linkers as well as 
synthetic conditions. As a result, the pore architecture of 
MOFs can be easily tuned for specific purposes. Till date, 
many interesting studies have been performed for noble 
gas adsorption and separation using MOFs which are 
discussed below.

One of the first studies related to the application of 
MOFs for noble gas adsorption was performed by Muller 
et al.[88] using IRMOF-1[1]. Their study confirmed that a 
stainless steel container filled with IRMOF-1 can contain 
more moles of noble gas as compared to an empty cylinder. 
The study also showed a significant difference among 
different noble gases based on their polarizability. Muller et 
al. have also explored to application of another interesting 
MOF i.e. HKUST-1[1] for separation selectivity of Kr/Xe. 
HKUST-1 is copper-based MOF having a porous network 
and accessible Cu metal sites.[89] Using HKUST-1 as an 
adsorbent, a significant improvement in the separation 
selectivity of Xe/Kr as compared to activated Carbons has 
been obtained. However, commercially available HKUST-1 
showed lower Xe capacity (3.18 mol/kg) as compared to 
activated carbons (3.72 mol/kg).[90] Interestingly, HKUST-1 
shows good adsorption capacity of noble gas from air 
which indicates its suitability for applications in off-stream 
gases of nuclear reprocessing plants. The adsorption sites 
of noble gases in HKUST-1 were confirmed to be the small 
pockets and the surrounding windows leading to the cavity 
through investigations using NMR, X-ray and neutron 
scattering analysis.[89,91]  The pore structure of FMOFCu 
consists of tubular cavities (~ 0.51 × 0.51 nm) connected 
to smaller size windows of dimensions 0.35 × 0.35 nm. 
This particular MOF could be used to selectively adsorb 
Kr (kinetic diameter 0.36 nm) over Xe (kinetic diameter 
0.39 nm) using the molecular sieving effect. The selective 
adsorption of Kr using FMOFCu was observed at 0 oC and 
lower temperature as at higher temperatures, expansion 
of the window permitted the diffusion of Xe also within 
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the pore network of the MOF. [92,93] DOBC-based (DOBDC 
= 2,5-dihydroxyterephthalate) MOFs with different metal 
nodes (M = Mg, Mn, Fe, Co, Ni, Zn) are highly porous 
having open metal sites .[94] As a result, these MOFs are 
excellent beds for adsorption of different gases. Ni-DOBDC 
has shown 55 and 3 wt.% adsorption capacity for Xe and 
Kr, respectively at 100 kPa and 298 K. The adsorption 
capacity for Xe of Ni-DOBDC is comparable to activated 
carbons. The adsorption performance of DOBDC-based 
MOFs was found to be independent of metal nodes.[95] 
The adsorption capacity and selectivity (Kr/Xe) could be 
enhanced by loading Ag nanoparticles in Ni-DOBDC.[96] 
Ag-loaded MOFs showed Xe uptake capacity of 70 wt.% 
and Xe/Kr selectivity of ~ 7. The observed enhancement 
is attributed to the strong dipole-induce dipole interaction 
between the noble gases and Ag nanoparticles. Combining 
Ni-DOBDC and FMOFCu in a two-step process, Xe and 
Kr were efficiently separated.[97] MOFs based on formats 
linkers M3(HCOO)6 (M = Mg, Ni, Co, Zn, Mn) with pore 
sizes of 0.5–0.6 nm of zig-zag channels have also been 
explored for the adsorption characteristics towards noble 
gases.[98,99] Co3(HCOO)6  shows type I and liner adsorption 
isotherms for Xe and Kr.[98] Separation selectivity of ~ 6 for 
Xe has been observed for the formate-based MOFs. The 
separation selectivity has been attributed to the zig-zag 
channels of these MOFs as Xe atoms fit preferentially at 
one site of these zig-zag channels. MOF-505 was tested for 
the breakthrough experiments based on the computational 
results that showed Xe/Kr separation selectivity using 
MOF-505 in the pressure range of 0.1 to 1 MPa.[92,100] MOF-
505 showed preferential adsorption of Xe as compared to 
Kr resulting in separation selectivity of 9–10. In this case, 
preferential adsorption of gases was attributed to the pore 
confinement effect as well as polarizable open metal sites 
present in the pore network of this framework.

Xiong et al.[101] have studied the noble gas separation 
performance of a microporous MOF i.e. MOF-Cu-H 
which has the suitable pore size matching with the size 
of Xe. The organic linker for MOF-Cu-H is H2PYBDC 
(H2PYBDC = 5-(pyridin-3yl)-1,3-benzenedicarboxylic 
acid). In this particular MOF, the pore network consists of 
one-dimensional (1D) distorted rhombic channels with a 
size of ~ 6.4 Å.  However, due to the presence of stretched 
pyridine rings from the PYBDC2- anions into the channel, 
1D channel is divided into two smaller parts of sizes ~ 3.7 
Å In addition, the pore network of the MOF consists of 
small size cages of sizes ~ 4.4 Å with window openings 
of 3.5 Å that connects these pores to the 1D channels The 
size of these pores are precisely matching with the kinetic 
diameter of Xe (4.1 Å). Investigation of MOF-Cu-H under 
dilute conditions (< 500 ppm Xe) pertinent to nuclear fuel 

reprocessing  showed good adsorption kinetics, high Xe 
adsorption capacity (3.19 mmol/g at 1 bar and 298 K) 
and significantly high Xe/Kr separation selectivity (~ 16). 
The outstanding performance of this MOF for noble gas 
separation is attributed to the specially designed pore 
network as it does not contain any open metal site. 

Lee et al.[102] have studied three different MOFs viz. 
(MIL-100(Fe), MIL-101(Cr), and UiO-66(Zr)) for the noble 
gas separation. From the Xe and Kr isotherms, it was 
observed that among all three, UiO-66(Zr) has the highest 
adsorption capacity (1.18 mmol/g) for Xe at 1 atm and 
298 K. In these MOFs, smaller pore size was observed to 
result in higher adsorption capacity because the adsorption 
strength increases with the increase in overlap of the 
potential field from two opposite walls of the pore. The 
dynamic breakthrough experiment using UiO-66(Zr) 
pellets showed Xe/Kr selectivity of 3.8. The observed 
selectivity is comparable to the Xe/Kr gas selectivity of 
other MOFs. UiO-66(Zr) based column has shown very 
good regeneration just by purging it for 30 min under 
a He flow of 30 ml/min without heating the column. In 
addition, UiO-66(Zr) has shown very high hydrothermal 
and radiation stability which are important criteria for a 
porous material to be used for noble gas adsorptions from 
off-stream gases of a processing plant.

Niu et al.[103] (Figure 6) have reported a self-adjusting 
MOF (ATC-Cu) for the capture of Xe and Kr at very low 
partial pressure, a condition similar to nuclear reprocessing 
plant. ATC-Cu structure consists of a 4 Cu paddle-wheel 
connected by the ATC linker to construct a 4,4-coordinated 
network. The pore network of ATC-Cu consists of two 
types of cavities (I and II), and also contain the open metal 
sites. The average radius of these cavities is 3.90 and 3.85 
Å, respectively. Xe was observed to be adsorbed at the 
centre of these cavities leading to a reduction in size of 
these cavities. At 298 K, the Xe and Kr uptake capacity of 

350 ppm Xe, 21% O2, 78% N2, 0.03% CO2 and 0.9% Ar), Xe capture capacity of Al-Fum-Me 

was determined to be 5.67 mmol kg−1 which is comparable to other MOFs suitable for the 

application of noble gas capture from off-stream of nuclear reprocessing plants (Figure 8). 

 

 
 

Figure 6. Schematics showing the structure of rigid (A), Flexible (B) and self-adjusting 

frameworks (C). Reprint with permission from ref [103]. 

 

 

 

Figure 6. Schematics showing the structure of rigid (A), Flexible (B) and 
self-adjusting frameworks (C). Reprint with permission from ref [103].
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this MOF are 5.0 & 2.65 mmolg–1, and 2.7 & 0.52 mmolg–1 
at 1 and 0.1 bar, respectively. The Xe adsorption capacity 
at 1 bar for this MOF is much higher than Xenon hydrates. 
The cycle performance of this MOF for the adsorption of 
noble gases is very excellent. The adsorption capacities for 
noble gases at low pressure and ambient conditions for this 
MOF are comparable with the available materials showing 
the best capacities and hence, it is a promising material for 
removal of the noble gases from the off-stream of a nuclear 
processing plant.  

Chen et al.[104] have investigated the Xe/Kr separation 
performance of a microporous MOF i.e. SBMOF-
2.2H2O (Stony Brook MOF-2). This MOF has a rigid 
three-dimensional crystalline structure consisting of 
Ca metal nodes connected to a linker 1,2,4,5-tetrakis(4-
carboxyphenyl)-benzene.  The dehydrated form of 
SBMOF is highly porous and has ~ 25.6 % of void space 
in its unit cell.  The hydrated state of SBMOF-2 shows a 
high Xe capacity of ~ 27 % at 298 K along with a high Xe/ 
Kr selectivity of approximately 10 at 298 K. SBMOF-2 
shows type I adsorption isotherms for both Xe and Kr 
but the adsorption capacity for Xe is 3 times higher than 
Kr. Through diffraction measurements, two sites for 
adsorption of Xe and Kr have been identified in this MOF. 
In the same series, Banerjee et al.[105] have investigated the 
performance of SBMOF-1 which is also known as CaSDB, 
[SDB = 4,4-sulfonyldibenzoate] for the separation and 
capture of Xe. In this study, SBMOF-1 was chosen after a 
rigorous molecular dynamic (MD) simulation screening of 
existing and newly predicted MOFs. Xe uptake at lower 
pressure using activated SBMOF-1 was observed to be 
very close to the predicted value from the MD simulations. 
The saturation of isotherms for Xe at lower pressure as 
compared to other gases like Kr confirmed the preferential 
adsorption of Xe in SBMOF-1 which is a requisite for higher 
separation selectivity. Xe uptake in SBMOF-1 was observed 
to be very fast reaching ~ 80 % within the first 10 minutes. 
Additionally, it retained its adsorption capacity after 10 
adsorption/desorption cycles confirming its superior 
performance under multiple cycles. A single breakthrough 
experiment performed on SBMOF-1 using a representative 
gas mixture (400 ppm. Xe, 40 ppm. Kr, 78.1 % N2, 20.9 % O2, 
0.03 % CO2 and 0.9 % Ar) showed preferential capture of Xe 
by SBMOF-1. All other gases pass through column within 
minutes, whereas Xe is retained in the column for hours. 
The Xe uptake capacity  under dynamic conditions was 
observed to be 13.2 mmol Xe per kg which is significantly 
higher than many MOFs and porous materials used for 
this purpose. SBMOF-1 also showed remarkably high Xe 
uptake (~11.5 mmol kg–1) even in the presence of water 
vapor. The remarkable performance of this MOF in the 

presence of water vapour is attributed to the absence of 
an open metal site in this framework.

Liu et al.[106] have recently reported an ultra-
microporous MOF for the Xe adsorption and separation 
having a benchmark performance. The ultramicroporous 
MOF i.e. Cu-MOF-11 was synthesized using H4ATC 
(1,3,5,7-adamantane tetracarboxylic acid) and copper 
nitrate trihydrate [Cu(NO3)2⋅3H2O] through a hydrothermal 
reaction. The 3D network of MOF-11 consists of ATC linker 
connected with four Cu2(COO4) metal clusters, and each 
metal cluster connected to four linkers. This type of linkage 
results in a porous network consisting of two types of 
channels: one square-shaped channel (diameter 4.4 Å) 
along the z-xis and another rhombic channel (diameter 
4.4 × 5.4 Å) along the x and y-axis. In addition to these 
channels, two aliphatic hydrocarbon cavities also exist in 
the pore network wherein 8 or 12 hydrogens from the linker 
point toward the centre of cavities. The distances between 
these hydrogens in the cavities is ~ 3.5 and 3.7 Å, and hence 
provide potential adsorption sites for the adsorption of Xe. 
The total adsorption capacity for Xe of this MOF at 1 bar 
and 298 is determined to be 4.95 mmolg–1, which is among 
the best capacities reported for different porous materials. 
This particular MOF shows highly temperature-dependent 
adsorption isotherms and saturation at very low pressure. 
These characteristics indicate its very strong affinity for 
the Xe adsorption. The uptakes for other various gases 
(Kr, Ar, N2 and O2) under the same conditions (298 K and 
1 bar) by MOF-11 are observed to be very low, which 
indicates its preferential adsorption characteristics for Xe. 
MOF-11 showed the highest storage density (3533 g/L) of 
Xe at 200 K. The Xe/Kr separation selectivity for a 20/80 
binary gas mixture was determined to be  ~ 19.1 at 298 K 
and 1 bar based on  ideal adsorbed solution theory (IAST). 
Thus determined selectivity is among the highest for the 
studied MOFs till date. Single crystal diffraction studies 
on Xe-loaded MOF-11 confirmed a very dense packing 
of Xe atoms within the cavities of the frameworks. The 
breakthrough experiment at 298 K for a representative 
Xe/Kr (20/ 80) gas mixture resulted in Xe/Ke separation 
selectivity of ~ 16.6 which is one of this highest. During 
the desorption process, high-quality Xe could be produced 
with a very good recovery rate. The regeneration capacity 
of MOF-5 during the breakthrough experiments involving 
multiple cycles was found to be extraordinary. In view of 
its superior performance for Xe/Kr separation, MOF-11 
was tested mimicking the conditions of the off-stream gases 
of a reprocessing plant. Under the very dilute conditions 
of noble gases in the feed mixture, the Xe adsorption 
capacity was observed to be 24.5 mmol kg–1 at 298 K which 
is again highest among all the porous materials used for 
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this purpose. MOF-11 also showed extremely high stability 
under harsh conditions similar to the off-stream of nuclear 
reprocessing plant.

Hurley et al.[107] have studied four Al-based robust 
MOFs for the adsorption and separation of noble gases. 
The sizes of the pores present in these frameworks [Al-
PMOF, Al-PyrMOF, Al-BMOF and MIL-120] are decided 
by the dimensions of the tetracarboxylate ligand. Hence 
the longer ligand results in MOF with larger pore size. 
Among these four MOFs, MIL-120 has the least surface area 
(177 m2/g) whereas Al-PMOF has the highest surface area 
(1339 m2/g). All these MOFs show preferential adsorption 
capacity for Xe as compared to Kr due to the compatibility 
of Xe with the pore sizes of the frameworks. At 1 bar 
Xe pressure and 298 K, Al-PMOF exhibited the highest 
capacity of 5.28 mmol/g among all the four Al-MOFs. The 
lower capacity exhibited by Al-PyrMOF is attributed to 
the flexibility of this framework under gas pressure. The 
Xe selectivity using IAST theory was predicted highest 
for MIL-120 at low pressure (< 5 mbar) whereas it was 
higher for Al-BMOF. The breakthrough experiment using 
a single column was performed on a He gas containing 400 
ppm Xe and Kr mimicking the off-gas stream of a nuclear 
reprocessing plant. No retention of Kr was observed in the 
column whereas significant retention of Xe was observed. 
Xe capture by Al-BMOF was observed to be three times 
higher as compared to MIL-120. Exposure to acidic and 
basic conditions confirmed higher stability of Al-BMOF 
as compared to MIL-120.

Idress et al.[108] have investigated the Xe/Kr separation 
using a Zr-based MOF (NU-403) tailoring its pore 
aperture and structural defect. NU-403 structure consists 
of Zr6-clusters linked with 3D bicyclo[2.2.2]octane-1,4-
dicarboxylate. The pore aperture of NU-403 (~ 5 Å) was 
observed to be smaller than UiO-66 (~ 7 Å). NU-403 was 
treated with a post-synthetic healing process to prepare a 
defect-free NU-403-PSDH. Both UiO-66 and NU-403-PSDH 
showed good adsorption capacity of noble gases at 298 
K because the pore sizes of both frameworks are larger 
than the kinetic diameter of Kr and Xe.  However, uptake 
of Xe at lower pressure was observed to be much higher 
by NU-403-PSDH as compared to UiO-66 indicating the 
possibility of better separation selectivity of Xe from Kr 
at lower pressure using the newly synthesized MOF. The 
separation selectivity for Xe from a 20:80 Xe:Kr mixture 
based on IAST using the gas adsorption isotherms was 
determined to be ~ 6 for UiO-66. The separation selectivity 
was observed to be reduced to ~ 2 for NU-403 due to the 
linker defects which increases the pore size. However, 
defect-healed NU-403-PSDH showed the Xe/Kr separation 

selectivity of ~ 9 due to the improved pore confinement of 
Xe in the smaller size pores.

Meek et al.[108,109] have explored the role of polarizability 
on the adsorption of noble gases in isoreticular MOF 
(IRMOF-2). To vary the polarizability of IRMOF-2, 
hydrogen in the linker has been replaced with different 
halogens (−F, −Cl, −Br, or −I). The framework structure of 
these halogenated MOFs remains nearly identical to their 
hydrogenated counterpart i.e. IRMOF-1. The surface area, 
pore volume and pore size etc. were observed to be nearly 
the same for all the halogenated MOFs. In this study, it 
was observed that increasing polarizability leads to an 
enhancement in the adsorption uptake of the gases.

Gong et al.[110] have investigated the nanoporous 
carbons derived from ZIF-11, [Zn(bIM)2], for the separation 
selectivity and adsorption characteristics of Xe. The 
nanoporous carbons were derived by heating ZIF-11 under 
high-purity nitrogen gas at 700, 800, 900, 1000 and 1100 oC 
for 8 hours followed by their washing with HF to remove 
the Zn metal from the derived carbons. Another series of 
nanoporous-derived carbons were synthesized following 
the above-mentioned procedure for composite of ZIF-11 
and furfuryl alcohol (FA) composites. It is shown that 
nanoporous carbon derived from the composite by heating 
at 1000 oC exhibits the best characteristics for Xe separation 
and capture from the gas mixture having dilute Xe content 
mimicking the off-stream of a nuclear reprocessing plant. 
The nanoporous carbon derived from the composite by 
1000 oC heating shows a thermodynamics selectivity 
of ~ 19.7 at dilute conditions. The nanoporous carbon 
also showed a very high adsorption capacity of Xe (20.6 
mmolkg-1) under dilute dynamics conditions (350 ppmv 
Xe, 35 ppmv Kr, 78% N2, 21% O2, 0.03% CO2 and 0.9% Ar). 
These characteristics indicate that the nanoporous carbons 
derived from ZIF-11 in this study are excellent materials 
for noble gas capture and separations. 

Pei et al.[111] (Figure 7) have investigated the robust 
and radiation-resistance Hoffman-type MOFs for their 
utilization in the separation of Xe/Kr and capture of Xe from 
dilute off-gas streams. Two Hoffman-type MOFs Co(pyz)
[Ni(CN)4] (termed as ZJU-74a-Ni)  and Co(pyz)- [Pd(CN)4] 
(termed as ZJU-74a-Pd) were prepared and investigated. 
These MOFs have a porous framework consisting of pore 
sizes (4.1 and 3.8 Å) comparable to the kinetic diameter of 
Xe (4.047 Å) and oppositely placed adjacent open metal 
sites for preferential adsorption of Xe compared to other 
gases. These MOFs showed unprecedented Xe uptake 
capacities (89.3 and 98.4 cm3 at 296 K) at 0.2 bar. The uptake 
capacities at lower pressure (0.2 bar) are nearly 89.6% and 
93.4% of their Xe uptake capacities at higher pressure (1 
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Figure 7. Theoretical simulation of binding sites of  (a) Xe and (b) Kr in ZJU-74a-Ni, and (c) Xe 

in ZJU-74a-Pd. (d) SCXRD structure of Xe loaded ZJU-74a-Ni. (e) Xe adsorption site in ZJU-

74a-Ni illustrated by SCXRD. (f) Breakthrough curves of 20/80 Xe/Kr for ZJU-74a-Pd using gas 

flow of 2.5 mLmin-1 and 1 bar. (g) Xe uptake comparison by different MOFs. Reprint with 

permission from Ref. [111]. 

 
 

 

Figure 8. Schematic showing the capture and separation of Xe and Kr using porous materials 

from the off-stream of nuclear reprocessing plants. 

bar). Such high adsorption capacity at lower pressure 
confirms their high selectivity for Xe/Kr separation. It 
was confirmed from SCXRD analysis of the Xe adsorbed 
ZJU-74a-Ni that one  Xe molecule per unit cell is adsorbed 
which finally corresponds to  4.52 mmol cm−3 gas. Thus 
determined uptake capacity was observed to be consistent 
with the experimentally determined Xe uptake (4.45 mmol 
cm−3) at 296 K and 1 bar. The dynamic breakthrough 
experiment was performed to determine the separation 
performance of ZJU-74a-Pd for an actual 20/80 Xe/Kr 
mixture. Kr breakthrough occurs at 24 min g–1 wherereas Xe 
breakthrough occurs much later at 110 min g–1 confirming 
its potential for the separation of these gases. These MOFs 
showed full adsorption capacity regeneration after 3 cycles 
confirming their reusability.  The crystallinity of ZJU-74-Pd 
remains maintained after exposure to a high dose of 1000 
kGy that confirms its high radiation stability compared to 
other materials proposed for the noble gas separation from 
the off-stream gases of the nuclear reprocessing plants.

Perry et al.[112] have investigated the noble gas 
adsorption characteristics of ten different MOFs. In the first 
series MOF-74-x series (x = Mg, Co, Ni, and Zn), the effect 
of divalent metal (x) identity within a constant topology 
was explored. The second series consists of nbo-MOFs, and 
in this case the effects of pore size maintaining constant 
open metal sites on gas adsorption characteristics have 
been explored.  Gas uptake by nbo-MOFs was observed to 
increase with decreasing pore size. This trend in gas uptake 

is attributed to the gas polarizability as highly polarised 
gas atoms are strongly confined in smaller pore sizes. A 
systematic investigation focused on the pore architecture 
vs gas uptake confirms that large cages connected with 
narrow pores efficiently adsorb the noble gases as such 
pore network provides a tortuous, zig-zag diffusion 
pathways that likely increase the strength of the MOF-gas 
interaction. The investigation focused on the role of open 
metal sites confirms that the accessibility of open metal 
sites enhances the gas-framework interaction largely due 
to (point charge)-(induced-dipole) interactions. As the 
charge on divalent metals is same in all the investigated 
MOFs, insignificant differences in noble gas uptake were 
observed among the studied MOFs.

Wu et al.[113] have studied the Xe/Kr separation using 
a Ca based MOF consist of unsaturated Ca centre. The 
studied MOF viz. Ca-SINAP-1 (SINAP = Shanghai Institute 
of Applied Physics, Chinese Academy of Sciences) consist 
of the structure formed by the linkage of Ca metal nodes 
with the linker 1,1,2,2-tetra(4-carboxylphenyl)ethylene. 
The porous network of the framework consists of 1D 
rhombohedral channels with aperture size of ~ 4.8 Å × 
13.6 Å. The porous network of the MOFs contains open 
holed accessible to Xe and Kr atoms. The MOF retains its 
crystal structure in the dehydrated state, which has been 
used to study the adsorption characteristics of noble gases 
as an adsorbent. Ca-SINAP-1 was observed be chemically 
stable in harsh environment as well as under hydrothermal 

Figure 7. Theoretical simulation of binding sites of  (a) Xe and (b) Kr in ZJU-74a-Ni, and (c) Xe in ZJU-74a-Pd. (d) SCXRD structure of Xe 
loaded ZJU-74a-Ni. (e) Xe adsorption site in ZJU-74a-Ni illustrated by SCXRD. (f) Breakthrough curves of 20/80 Xe/Kr for ZJU-74a-Pd using 
gas flow of 2.5 mLmin-1 and 1 bar. (g) Xe uptake comparison by different MOFs. Reprint with permission from Ref. [111]
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conditions. These studies established the fact that this MOF 
is suitable for application of noble gases from the harsh 
environment of off-stream gases from nuclear reprocessing 
plants. The dehydrated form of Ca-SINAP-1 showed Xe 
adsorption capacities of 54.3 mL/g at 313 K and 100 kPa, 
which corresponds to the gas occupancy of 1.55 Xe atoms 
per cell unit. There was no change in the Xe uptake capacity 
after β irradiation of the MOF confirming its radiation 
stability which is a prerequisite for the application of a 
MOF in a nuclear reprocessing plant. 

Yan et al.[114] have synthesized two Al-based MOFs  i.e. 
Al-Fum (Al-fumarate, Basolite A520) and Al-Fum-Me (Al-
methyl-fumarate). Methyl functionalization of the linker 
was used to tailor the pore size of the MOF for enhancing 
the affinity of this MOF towards noble gas adsorption. The 
Xe uptakes by Al-Fum and Al-Fum-Me were determined 
to be 3.47 and 3.01 mmol g−1, respectively (298 K and 1 
bar). Xe uptakes by these MOFs were observed to be 3.4 
and 2.5 times higher than the Kr uptakes under the same 
conditions. However, the Xe uptakes by these MOFs were 
comparable with the highest reported Xe uptakes by other 
MOFs. At lower pressure (0.2 bar) and 298 K, Al-Fum-Me 
was observed to adsorb higher amount of Xe (1.77 mmol g−1) 
than that of Al-Fum (1.51 mmol g−1). The steep adsorption 
of Xe at lower pressure indicates its higher affinity of Xe 
adsorption resulting in higher separation selectivity for 
Xe/Kr mixture. The isosteric heats of adsorption for Xe 
adsorption at Al-Fum-Me was determined to be higher 
than Al-Fum confirming the strong binding of Xe with 
Al-Fum-Me. The Xe/Kr separation selectivity factors of 
10.0 and 8.1 for Al-Fum-Me and Al-Fum  were determined 
using IAST theory. Higher separation factor for Al-Fum-Me 
clearly indicates the narrowing of pore size due to steric 
hindrance caused by the methyl functionalization of the 
linker has a direct role in the separation selectivity of the 
gas mixture. Single-column breakthrough experiments 
performed at 298 K using Al-Fum-Me for 20:80 Xr-Kr 
binary mixtures showed much  faster elution of Kr ~ 4 min 
g−1 as compared to Xe  ~ 28 min g−1. These results along 
with good radiation stability established that Al-Fum-Me 
can be a suitable candidate for the noble gas capture and 

separation from the off-stream gases from the nuclear 
reprocessing plants. Under the dilute conditions (35 ppm 
Kr, 350 ppm Xe, 21% O2, 78% N2, 0.03% CO2 and 0.9% Ar), 
Xe capture capacity of Al-Fum-Me was determined to be 
5.67 mmol kg−1 which is comparable to other MOFs suitable 
for the application of noble gas capture from off-stream of 
nuclear reprocessing plants (Figure 8).

6.2. Radon capture
In addition to applications in capture and separation of 

Xe and Kr, MOFs have also been explored for the capture of 
radioactive Rn (219Rn, 220Rn, and, dominantly, 222Rn) which 
is generated through the natural decay series of 235U, 232Th, 
and 238U. Capture of radioactive Rn from the atmosphere 
is a big challenge because it has very low partial pressure 
(<1.8 × 10−14 bar, <106 Bq/m3) in air, and interacts only 
through the weak van der Waals (vdW) interactions 
with the adsorbent.[115] In such a case, adsorbents having 
only favorable adsorption thermodynamics or feasible 
diffusion kinetics do not perform well for Rn capture. For 
efficient capture, porous materials having both favorable 
adsorption thermodynamics and feasible diffusion kinetics 
are required for the efficient Rn capture. Zeng et al.[116] have 
screened 23 MOFs using computational methods for Rn 
capture. In this study, four MOFs viz. ZIF-12, HKUST-1, 
IRMOF-62 and ZIF-11 were proposed as excellent 
candidates for the capture of Rn. These materials showed 
a decrease in the separation selectivity of Rn from the gas 
mixtures with the increase in Rn content. It established 
that these MOFs are good candidates for capturing Rn 
from atmosphere having its low concentration. Among 
these four MOFs, ZIF-12 was observed to have selectivity 
of ~2800 and 1750 from Rn/N2 and Rn/O2 mixtures, 
respectively having Rn molar concentration of 0.0001.Wang 
et al.[115] have screened out Imidazole loaded ZIF-7 (ZIF-7-
Im) as a promising variant using computer simulation for 
Rn capture. ZIF-7-Im was shown to have 28 times higher 
Xe adsorption capacity compared to pure ZIF-7, confirming 
the role of modified pore network on Xe capture which can 
be used to mimic the Rn capture in the absence of pure 
Rn for the adsorption characteristics. The breakthrough 
experiment performed at 298 K using 222Rn showed an 
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Figure 8. Schematic showing the capture and separation of Xe and Kr using porous materials from the off-stream of nuclear reprocessing plants.
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efficient capture of Rn as the concentration in the outlet 
reach below detection level by injecting 3000 Bq/m3 in 
the inlet (Figure 9). Park et al.[117] have also followed the 
same methodology for designing a MOF for the efficient 
Rn capture. Using computational screening of 4951 MOFs, 
Al-ndc (ndc = 1,4-naphthalenedicarboxylic acid) was 
selected for the Rn capture from air. The hydrothermal and 
chemical stability of Al-ndc were observed to excellent. 
Using a single breakthrough experiment, Rn removal rate 
(~ 52.1%) exhibited by Al-ndc was found much higher than 
the activated carbon (~ 25.3%) confirming its suitability for 
the Rn capture from the atmosphere.

ion pair. Thus created high energy electrons produce 
secondary electrons and electron-hole pair during the 
thermalization process. The nano-porosity of MOFs allows 
to accommodate the guest molecules which facilitate the 
charge transfer and ion conduction through MOFs. MOFs 
are in general electrical insulator due to their particular 
type of coordination between metal and linkers. The 
charge transport in MOFs happens through three different 
mechanisms; (i) through-bond charge transport, (ii) 
between linkers charge transport, and (iii) guest-assisted 
charge transport.[119]  For example, Ni-DABT ((DABDT = 
2,5-diamino-1,4-benzene dithiol dihydrochloride) exhibit 
electrical conductivity of 4.0 × 10−7 S cm−1 at 300 K which 
is attributed to the 𝜋–d coupling interactions of Ni2+ 
cations and the redox-active amino/sulphydryl groups 
of DABDT2− linkers. As a result of these characteristics, 
Ni-DABT shows efficient conversion of X-rays to moving 
charge carriers.[120] The second mechanism is related 
to continuous charge transport through non-covalent 
interactions between the organic linkers which will be 
stronger in the case of regular packing of linkers. SCU-12 
MOF [(CH3)2NH2]Tb2(C6Cl2O4)3(DMF)2(H2O)2(HCOO) [17] is 
one of the examples showing electron transport through 
linkers only as the negligible overlap between the metal 
ion and the linker exists in this MOF. Third type of electron 
transport mechanism is observed in MOFs wherein the 
pores are occupied by conductive guest molecules. N,N’-
diethyl-4,4′-bipyridinium cation (EV2+) viologen unit into 
the pore of pristine [(Me2NH2)3(SO4)]2[Zn2(ox)3] MOF 
is a unique example showing the guest assisted charge 
transport in MOFs.[121] As a result of electron accepting 
nature of viologen, strong donor accepter interaction exists 
between host and guest molecule which finally facilitate the 
charge transport through the pore network of this MOF. In 
this case, conductivity of 1.79 × 10−9 S cm−1, is determined 
under X-ray irradiation which is one order higher than the 
conductivity measured in the absence of X-rays.

As mentioned before, another mechanism to detect 
the radiations using MOFs is to convert the radiation 
energy into light photons. The radiation to light photon 
conversion can originate from metal ions or linkers. In the 
case of metal ions with no unpaired electrons, emissions 
primarily emanate from linkers only. These emissions are 
similar to what is observed in the solution state of linkers 
and occur through 𝜋–𝜋* or n–𝜋* transitions.[122] Metal based 
emissions are generally observed from MOFs consist of 
luminescent lanthanide ions or actinide ions which show 
f-f and d-f transitions.[123] In addition, due to higher Z 
of these metals as compared to transition metals, they 
have larger energy absorption coefficient. As such, weak 
crystal field surrounding the dopants lanthanide ions 
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6.3. Sensing and Detection of Radioactive Noble 
Gases

As discussed before, MOFs have high affinity for 
capture of radioactive noble gases even from the dilute 
streams due to their strong binding with noble gases that 
are attributed to their specially designed pore architecture 
as well as open metal sites. In addition, MOFs potential 
for sensing and detection of radioactive noble gases have 
also been explored designing special types of MOFs. 
Ionizing radiation (e.g., X-ray, 𝜸-ray, 𝜷-ray, 𝜶-particle, 
and neutron) responsive MOFs have been synthesized 
exploiting the synergy between high atomic number metal 
nodes and their linkage with the organic linkers.[118] These 
radiation responsive MOFs efficiently convert the ionizing 
radiation energy to visible light or electrical charges which 
is measured using  advanced electronics for sensing and 
detection of these radiations. Whenever the incoming 
energy of radiation is higher than ionization potential of 
constituent elements of MOFs, metal nodes or organic 
linkers undergo ionization leading to creation of electron-
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pose a challenge in case of MOFs leading to low quantum 
yield. However, properly designed MOFs wherein energy 
transfer pathways are facilitated by the linkers show 
strong radioluminescence. For example, Tb(oxalate)
(coo)(1,10- phenanthroline)・H2O MOF containing 
1,10-phenanthroline has been reported as a strong green 
X-ray scintillator as the linker of the MOF acts as energy 
transfer agent.[73] It has been shown that exploiting the 
similar coordination of different lanthanides, MOFs with 
hybrid lanthanide nodes can produce the emission color 
gamut.[124,125] In some cases, MOF shows better radiation 
and hydrothermal stability as compared to a standard 
CsI:Tl scintillator. Hence, MOFs can be considered as 
advanced scintillation materials for detection of energetic 
radiations.

Linker based emission is also possible in MOFs which 
is utilized for their application as scintillation material for 
radiation detection. Linkers based benzene derivates are 
short and, results in the formation of dense MOF which is 
effective in radiation adsorption. Pb(2-MTA)(DMF) MOFs 
(denoted as SCU-200, 2-MTA = 2-methylterephthalic acid, 
DMF = N,N-dimethylformamide)[126] has shown to have a 
linker based emission at 574 nm under X-ray irradiation. 
The emission is attributed to intramolecular electron 
transfer within the linker from carboxylate groups to 
the central benzene ring. This electron transfer leads to 
formation of 2-MTA2− radicals which are stabilized and 
accumulated within the conjugated framework and leads 
to the observed emission. Benzene derivatives incorporated 
in the pores of MOFs also help in fine-tuning the emission 
and conducting properties of the MOFs. 

As a result of responsive behaviour towards ionizing 
radiations, MOFs have found wide applications in X-ray 
dosimetry, X-ray imagining and X-ray therapy. [118] 
In addition, because of their responsive behaviour to 
radiation, MOFs have also found interesting applications 
in sensing and detection of noble radioactive gases 
at very low concentrations. Mauree et al.[127] have 
investigated Zn based photoluminescent MOFs (MOF-
5, MOF-9, MOF-205 and MOF-5ADC) to on-line detect 
the noble radioactive gases. Out of these four MOFs, 
MOF-205 and MOF-5 outperformed other MOFs for the 
detection of noble radioactive gases. Using these MOFs 
as scintillating materials, 85Kr could be concentrated and 
detected efficiently. In comparison with already existing 
technologies for online monitoring, it was shown that 
MOF-205 based scintillation system can be made portable 
with acceptable detection limit. Using MOF-205 based 
scintillation, half-life of 222Rn could be determined as 3.7995 
days by capturing it within the porous network of MOF-

205. Tritiated dihydrogen was also detected using this 
MOF based scintialltor which is otherwise very difficult 
to detect using these existing technologies.

Orfano et al.[128] have synthesized hafnium-based MOF 
incorporating dicarboxy-9,10-diphenylanthracene linkers 
which act as a scintillating conjugated agents for detecting 
the radioactive gases (Figure 10). With gas adsorption 
measurements under varying conditions of temperature 
and pressure similar to ones existing for the detection of 
radioactive gases in off-streams of the processing plants, 
high uptake capacities was observed for Xe and Kr. The 
Hf-based MOF shows a long lifetime of 2.8 ns with high 
photoluminescence quantum yield of 0.41 ± 0.06. Using 
a time coincidence technique, radioactive gases like 3H 
(low energy β emitter), 85Kr (high energy beta emitter) and 
222Rn (α/β emitter) could be efficiently detected on-line 
through gas flow. A linear response was observed for the 
detection of 85Kr up to a level of 1 kBqm−3 which is the best 
performance among the existing materials. 

Figure 10. (a) Schematic representation of the fluorescence emission 
mechanism in Hf-based MOFs. (b) Schematic of triple coincidence 
system used for the measurements [128].

7. Conclusions
MOFs can be designed with well defined pore network 

having particular pore aperture size and open metal sites 
which effectively determine their capture capacity of noble 
gases. The uptake capacity and separation selectivity have 
been increased multifold by screening large number of 
MOFs through theoretical simulations before selecting 
a MOF for the noble gas capture. Incorporating the 
fluorescent properties, MOFs have also shown potential 
applications for sensing and detecting the noble gases 
at very dilute concentrations. Tremendous progress has 
been made in the last decade for enhancement of uptake 
capacity of noble gases by radiation resistant MOFs. 
Looking at the MOFs potential for noble gas capture, it 
is likely that MOFs will play a deterministic role in noble 
gas capture and separation from the off-stream gases of 
nuclear reprocessing plants in coming years.  
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Abstract
Due to the highly solubility in the aquatic environments associated with chronic toxicity of heavy metal 
ions, such as, Hg2+, it can be absorbed easily by living organisms causing harmful effects. This necessitates 
decontamination of water from these toxic metal ions. Here, sulphur ligands were functionalized into metal 
organic framework adsorbents to increase their effectiveness in removing mercury ions, allowing them 
to decontaminate water with extremely low concentrations of mercury ions.  Thiol (SH) and xanthic acid 
(OCS2H) ligands were functionalized on to the surface of MIL-199 (Cu) and MOF-74 (Ni) pristine metal 
organic frame works, respectively.  The structure and functional groups of the prepared pristine and 
functionalized MOFs were analyzed by using AAS, XRD and FTIR techniques. Batch adsorption of mercury 
ions by the prepared materials revealed that MOF-74 showed higher adsorption capacity than MIL-199 
due to the presence of hydroxyl groups in the linker unit.  xanthic acid functionalized MOF-74 (MOF-74-
OCS2H) showed better performance than thiol functionalized MIL-199 (MIL-199-SH).  Various adsorption 
parameters were optimized. Adsorption equilibrium experiments revealed that Langmuir isotherm model 
best fitted with the data showing adsorption capacities of MIL-199-SH and MOF-74-OCS2H as 333 and 
840 mg/g at pH 4 and room temperature. This study provide a possible strategy to design sulphur ligand 
functionalized MOF based adsorbents for removal of mercury ions from waste effluent stream.

1. Introduction
Rapid industrialization has exacerbated the problem 

of availability of fresh and clean water as it has been 
accompanied with a large number of toxic heavy metals 
being discharged into the environment in industrial 
wastewater over the past few years [1, 2]. Mercury (Hg) is 
one such non-biodegradable heavy metal, for which the 
recent estimations suggest global anthropogenic releases 
to be 1000 tonnes a year [2]. It has been categorized as 
a “priority hazard substance” by the Agency for Toxic 
Substances and Disease Registry (ATSDR) because 
of its toxicity, mobility and a long residence time in 
the atmosphere [3]. The appalling Minamata disease 
discovered in 1956 in Minamata city of Japan was a result of 
mercury poisoning caused by eating seafood contaminated 
with methyl mercury that was discharged into Minamata 
Bay through industrial wastewater [4]. Mercury poisoning 
severely impairs neurological development and pulmonary 
function, causes blindness, paralysis, and can even cause 
breakage of chromosomes [5, 6]. The most common form 
in which it exists is Hg(II), which readily binds to organic 
and inorganic matter,  thereby posing a threat to aquatic 
life while also rendering the water unfit for public use [1, 7]. 

In spite of its extraordinarily poisonous nature, mercury 

is utilized mainly in the chlor-alkali, oil refinery, metal 
finishing, fertilizer, chemical, mining, smelting, power 
generation, paper, pulp, and rubber processing industries 
[8 - 11]. Mercury is also used in wide range of consumer 
products, including dental amalgams, batteries, electronic 
devices, blood-pressure gauges, thermometers, fluorescent 
and energy-saving lamps, pesticides, fungicides, cosmetics 
and medicines [12, 13]. Once used, many of these products 
and the mercury enter the wastewater directly or leach into 
water from disposal sites [13]. As per the US Environmental 
Protection Agency, the tolerance limit of mercury in 
drinking water is 2 µg/L ppm [14], while the World Health 
Organization (WHO) and the Bureau of Indian Standards 
(BIS) have set the permissible limit to 2 µg/L [15, 16]. 
The discharge limit of mercury in industrial wastewater 
is 10 µg/L as per Central Pollution Control Board, India. 
Mercury-containing wastewater must therefore be treated 
before being released into the receiving environment in 
order to reduce its serious effects. 

Owing to this, number of separation techniques have 
been developed for removal of mercury from wastewater. 
Amongst various processes that have been used such 
as solvent extraction [17], ion-exchange [18], membrane 
filtration [19, 20], electrochemical reduction, precipitation, 
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and electro dialysis [21-24], adsorption based processes 
offers significant advantages in many aspects such as 
generation of minimum amount of secondary waste, easy 
operation and possibility to achieve very low TLV values.  
That is why, adsorption based separation technologies either 
as sole process or as in combination with other different 
processes has now become one of the most commonly 
used methods, due to its simplicity, effectiveness, ease of 
operation and reusability [25, 26]. Adsorption process is 
determined mainly by the properties of the adsorbents. 
Conventional adsorbents such as resins, activated carbon, 
mesoporous carbon, silica and biosorbents have been 
utilized for mercury removal from aqueous solution. These 
adsorbents have limited adsorption capacity and selectivity 
for mercury and hence the desired TLV concentration 
may not be achieved by these materials. With the advent 
of nanotechnology, various porous nanomaterial based 
adsorbents, bearing high surface area and high reactivity, 
have been shown to possess better mercury adsorption 
behaviours.  Recently a new class of porous materials, 
Metal organic framework (MOFs) are an emerging as nano-
adsorbent for environmental remediation technologies [27]. 
The MOF is an organic-inorganic polymeric framework 
material formed by coordination of metal ions or metal 
clusters with organic ligands or linkers. The main features 
that makes MOF a good absorbent include large specific 
surface area, designable frame structure, controllable pore 
size, metal unsaturation sites, easy to modify etc. Over 
the past two decades, several hundred different MOFs 
have been studied for different applications, including 
gas separation, gas storage, sensing, photocatalysis, drug 
loading, and environmental applications [28-40].  

Removal of heavy metal ions from effluent stream 
using highly porous and tunable microstructure MOFs, 
is one of its primary application as reported in various 
literature [41-45].  Among heavy metals, mercury, a soft 
B-group metal, exhibits relatively weak interactions with 
oxygen containing ligands, moderate strength interactions 
with nitrogen-containing ligands, and strong interactions 
with sulfur-containing ligands [46]. Thus sensitivity and 
selectivity of MOFs towards mercury adsorption can be 
enhanced by modifying its surface by sulphur containing 
ligands such as thiol, dithiocarbamate, xanthic acid, etc. 
Increase in the adsorption efficiency of carbon nanotubes 
by introduction of such functional groups has been 
reported [47]

Owing to this, here thiol (SH) and xanthic acid (OCS2H) 
ligands were functionalized on to the surface of MIL-
199 (Cu) and MOF-74 (Ni) pristine metal organic frame 
works, respectively.  The Hg2+ ions adsorption by these 

two S-ligand functionalized MOFs from aqueous solution 
were investigated by batch method. The performances of 
both the base MOFs as well as functionalized MOFs was 
compared by carrying out adsorption experiments varying 
various parameters. 

2. Preparation of sulphur-Ligand Functionalized 
MOFs

Solvothermal methods were used to synthesize the 
base MOFs (MIL-199 and Ni-MOF-74) which were then 
functionalized with sulphur ligands (thiol and xanthate, 
respectively) using post synthetic modification protocol 
[48].

2.1 Synthesis and characterization of thiol 
functionalized MIL-199 (MOF-199-SH)

First MIL-199 was synthesized according to available 
literature methods [49-51]. In a typical preparation, a solid 
mixture of Cu(NO3)2·3H2O and 1,3,5-benzenetricarboxylic 
acid was dissolved in a mixture of DMF, ethanol and water 
in a 100 ml Teflon-lined autoclave vial. The vial was heated 
at 85ºC inside an oven for 24 h, yielding light blue crystals. 
After cooling the vial to room temperature, the solid 
product was obtained by decanting with mother liquor 
and washed 3-4 times with DMF through centrifugation 
in centrifuge tubes. Solvent exchange was then carried out 
3-4 times with ethanol through centrifugation in centrifuge 
tubes at room temperature. The product was then dried 
under vacuum at 170ºC for overnight, yielding MIL-199 in 
the form of deep purple crystals.

In the post synthetic modification step, the prepared 
MIL-199 was dispersed in toluene under ultrasonic agitation 
followed by stirring at room temperature. 1,2-Ethanedithiol 
was added into the suspension and agitated for 24 hours 
at room temperature. After the reaction, the solid product 
was separated from the mixture by centrifugation, washed 
with toluene followed by ethanol and the dried at 85ºC in 
vacuum oven for overnight. A schematic of the synthetic 
route is shown in Fig. 1.
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The prepared materials, the base MOF,  MIL-199 as 
well as the thiolated MOF, MIL-199-SH were characterized 
by XRD and FTIR analysis.  Elemental atomic absorption 
spectroscopic (AAS) analysis confirmed the loading of Cu 
in the MOF phase ~5 mmol/g. Powder XRD investigation 
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verified the MIL-199’s crystalline phase purity. (Fig. 2a). 
The diffraction peaks of the MIL-199 were consistent with 
the simulated patterns from the single crystal data as 
shown in Fig. 2a, and with those reported in the literature 
[52]. That the crystal structure of the base MOF has been 
retained after post synthetic fuctionalzion is clear from 
the similar XRD pattern of MIL-199-SH as shown in Fig. 
2a. The FTIR spectra of base and functionalized MOFs are 
shown in Fig. 2b. The appearance of strong peaks at 1630 
cm−1 in conjunction with the less strong absorption bands 
at 1760–1690 cm−1 confirmed the deprotonation of –COOH 
groups in 1,3,5-benzenetricarboxylic acid upon the reaction 
with copper ions. The feature of IR spetra of both the MOFs 
are is almost similar. The IR spectrum of MIL-199-SH 
showed an extra peak at 682cm-1 which can be attributed to 
the C-S bond frequency. This confirms the covalent linking 
of ethanedithiol in the structure of MIL-199.  

solution was decanted. The residue was purified by 
repeated centrifugation washing with acetone, ethyl 
alcohol, methyl alcohol and deionized water, successively. 
Finally, the product (MOF-74-OCS2H) was transferred into 
a Petri dish and dried in a vacuum oven at 50°C for 24h. A 
schematic of the reaction is shown in Fig. 3. 
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3. Evaluation of Hg2+ removal efficiency in aqueous medium 

In view of the practical application of adsorption, the divalent mercury ions, Hg2+, adsorption 
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functionalized MOFs (MIL-199-SH and MOF-74-OCS2H) materials were evaluated using 

adsorption theory. This theory [ relates the dependences of the adsorbed amount on the 

characteristic process parameters on a theoretical basis. Initially physical parameters such as 
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concentration of adsorbate, time of adsorption, and spatial length, respectively.  All adsorption 

models are based on the adsorption equilibrium. The use of both kinetic and dynamic 

adsorption models requires an understanding of the adsorption equilibrium. Both adsorption 
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3. Evaluation of Hg2+ removal efficiency in 
aqueous medium

In view of the practical application of adsorption, 
the divalent mercury ions, Hg2+, adsorption behavior of 
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the prepared base MOFs (Cu-MIL-199 and Ni-MOF-74) 
and sulphur-ligand functionalized MOFs (MIL-199-SH 
and MOF-74-OCS2H) materials were evaluated using 
adsorption theory. This theory [ relates the dependences 
of the adsorbed amount on the characteristic process 
parameters on a theoretical basis. Initially physical 
parameters such as temperature, pH and time of agitation 
are optimized in batch adsorption studies. The practice-
oriented adsorption theory consists of three main elements: 
the adsorption equilibrium, the adsorption kinetics, and 
the adsorption dynamics. The adsorption equilibrium 
describes the dependence of the adsorbed amount on the 
adsorbate concentration and the temperature. The primary 
components of the practice-oriented adsorption theory 
are depicted in Fig. 5, along with their interdependencies. 
The q, c, t, and z denotes adsorption capacity of adsorbent, 
concentration of adsorbate, time of adsorption, and spatial 
length, respectively.  All adsorption models are based on 
the adsorption equilibrium. The use of both kinetic and 
dynamic adsorption models requires an understanding of 
the adsorption equilibrium. Both adsorption equilibrium 
and adsorption kinetics data are required to forecast 
adsorption dynamics. 

other parameters, such as temperature, feed volume, feed 
concentration, etc. constant. As shown in Fig. 6a, pH do 
not have any significant effect for adsorption capacity 
(qe) by MIL-199, whereas for MIL-199-SH it has a unique 
dependence. The Hg2+ adsorption initially increases from 
pH 2 to 5, decreases from pH 5 to 7, again increases from 
pH 7 to 10 and after which it can be seen to decrease 
again. The adsorption capacity of MIL-199-SH has more 
than three time higher adsorption efficiency compared 
to the pristine MOF-199. The clear role of thiol groups in 
binding the mercury ions is seen from this enhancement 
in adsorption capacity.  From the experimentally observed 
data, it can be concluded that at a low pH, that is, for pH<5, 
there is competition between Hg2+ ions and H+ ions in the 
solution, which leads to a decrease in the amount of Hg+ 
ions adsorbed. The presence of negatively charged species 
of mercury such as HgCl3

-, Hg(OH)3
-, HgCl4

2- exist at the 
higher pH range [57], may be responsible for the decline 
in adsorption capacity as negatively charged thiol binding 
sites would repeal these forms of mercury.   The increase 
of capacity in the range of pH 7 to 10, may be due to the 
appearance of another cationic species, Hg(OH)+ in the 
solution [57]. The optimum pH of the metal ion solution 
used for further studies was decided to be 4 to 5 and further 
experimentations were conducted at this optimum pH.

The equilibrium data for the Hg2+adsorption by  MIL-
199 and MOF-199-SH was generated by varying initial 
feed mercury concentration from 10 to 1800 mg/L at 
room temperature, pH 4 and 1 mg/mL adsorbent dose. 
The extent of adsorption increases with increase in feed 
mercury concentration, showed maximum at 1500 mg/L 
and then decreases. The maximum adsorption capacity 
showed by MIL-199 and MIL-199-SH are 217 and 333 
mg/g. Adsorption data were fitted to Langmuir and 
Freundlich isotherm model showing better fit to the former 
one indicating chemical adsorption as a prime step during 
adsorption of the Hg2+ ions on the MOF adsorbent. This 
reflects that surface complexation of the metal ions with the 
thiol or xanthic acid  occurred during adsorption process. 
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3.2 Adsorption of Hg2+ by Ni-MOF-74 and MOF-
74-OCS2H

The solution pH has a great effect on the adsorption of 
the metal ions by the adsorbent. In this experiment, extent 
of adsorption was tested between pH 2 and 10 keeping 
feed concentration and adsorbent dosages a fixed value. 
A strong dependence of equilibrium adsorption capacity 
(qe) on the pH was observed as shown in Fig. 7a.  When the 
solution pH was low, it was observed that the adsorption 
capacity was as low as 77.99 mg/g, while at higher pH 
it reduced to 83.04 mg/g. The optimal conditions for the 
adsorption of Hg2+ ions by MOF-74-OCS2H was found at 
pH 4. At lower pH, there is competition between the H+ and 
Hg2+ ions to bind at the xanthate group which lowers the 
adsorption. On the other side, when pH > 4, depending on 
the amount of hydroxyl and chloride ions, different species 
such as Hg(OH)2, Hg(OH)+, Hg(OH)Cl, etc. were formed 
in the resultant solution effecting the adsorption capacity. 
Hence, an optimum pH at 4 was chosen in carrying out 
other separation experiments. 

The dependence of adsorption capacity of the 
adsorbent, MOF-74-OCS2H, on the initial feed concentration 
of mercury ions in the fluid phase was shown in Fig. 7b. 
The initial feed mercury ion concentration was varied 
from 10 to 10000 mg/L at room temperature, pH 4 and 
adsorbent dosages of 1mg/mL. The adsorption capacity 
of MOF-74-OCS2H for Hg2+ ions increases with increasing 
the concentration of Hg2+ ions if feed solution and it 
reaches equilibrium after 4000 mg/L Hg2+ concentration. 
Once all the binding sites (mainly xanthic acids) of the 
adsorbent covered by the adsorbate Hg2+ ions at higher 
feed concentration, adsorption capacity reaches a plateau 
indicating attainment of equilibrium. The linear plot 
of specific adsorption (Ce/qe) against the equilibrium 
concentration (Ce) showed that the adsorption of Hg2+ 

ions on the surface of MOF-74-OCS2H obeys the Langmuir 
isotherm model with maximum monolayer adsorption 
capacity of 840 mg/g. The applicability of Langmuir 
model for the description of equilibrium data also reflects 
that adsorption of Hg2+ ions on MOF-74-OCS2H is a 

chemisorption phenomenon where metal ions coordinate 
with the xanthic acid binding sites.  

3.3 Comparison of adsorption efficiencies 
between prepared 

Adsorption studies were carried out on 200ppm 
Hg2+ solution (pH 4) by MILL-199, MIL-199-SH, MOF-74 
and MOF-74-OCS2H in order to compare the capacity 
while realizing the potential of functionalizing MOFs 
for adsorption process of mercury. Fig. 8 represents the 
capacities of each of the materials analyzed. It is clearly 
observed that MOF-74 has higher mercury adsorption 
that MIL-199 owing to the presence of hydroxyl functional 
group in the linker which may take part in binding with 
mercury cation.  Again, xanthic acid functionalization 
enhances the adsorption in higher extent compared to 
thiolation. 
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mercury adsorption that MIL-199 owing to the presence of hydroxyl functional group in the 

linker which may take part in binding with mercury cation.  Again, xanthic acid 

functionalization enhances the adsorption in higher extent compared to thiolation.  
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After synthesizing two types of base MOFs (MIL-99 and MOF-74), these were functionalized 

with thiol and xanthic acid ligands, respectively, containing sulphur binding sites to improve 

the Hg2+ adsorption capability. The prepared functionalized MOFs retained the crystal phases 

after post synthetic modification reaction as confirmed from XRD and FTIR analysis. FTIR 

spectral data were used to confirm the introduction of S-ligands of the MOF. The prepared 

functionalized MOFs were then tested for Hg2+ uptake from aqueous solution in varied 

experimental conditions. Adsorption capacity have seen to increased 3 to 4 times after the 

functionalization for both of the MOFs. Highest adsorption capacities of MIL-199-SH and 

MOF-74-OCS2H observed as 333 and 840 mg/g at pH 4 and room temperature. Adsorption 
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MOF adsorbent and to find out the maximum adsorption capacity.  This study had shown that 
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4. Conclusion
After synthesizing two types of base MOFs (MIL-99 

and MOF-74), these were functionalized with thiol and 
xanthic acid ligands, respectively, containing sulphur 
binding sites to improve the Hg2+ adsorption capability. 
The prepared functionalized MOFs retained the crystal 
phases after post synthetic modification reaction as 
confirmed from XRD and FTIR analysis. FTIR spectral 
data were used to confirm the introduction of S-ligands of 
the MOF. The prepared functionalized MOFs were then 
tested for Hg2+ uptake from aqueous solution in varied 
experimental conditions. Adsorption capacity have seen 
to increased 3 to 4 times after the functionalization for both 
of the MOFs. Highest adsorption capacities of MIL-199-SH 
and MOF-74-OCS2H observed as 333 and 840 mg/g at pH 
4 and room temperature. Adsorption equilibrium data 
were used to understand the mechanism of the interaction 
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between Hg2+ and MOF adsorbent and to find out the 
maximum adsorption capacity.  This study had shown 
that suitable functionalization of MOFs can be followed to 
enhance the sensitivity of the adsorbent towards mercury 
removal from aqueous system. The same strategy can be 
utilize to design new MOF based adsorbents for treatment 
of waste water for removal of toxic heavy metal ions. 
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